Startseite Potential applications of low-cost Brazilian corn starch as an adsorbent for removing the Acid Violet 19 contaminant from river water
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Potential applications of low-cost Brazilian corn starch as an adsorbent for removing the Acid Violet 19 contaminant from river water

  • Alrivan Gomes do Rêgo Júnior , Íngride Pamilly Ribeiro Araújo de Oliveira , Joalis Barbalho de Souza , Tereza Noêmia Tavares da Fonsêca Melo , Ricardo Alan da Silva Vieira , Ytalo Cleyton dos Santos Souza , Moizes de Souza Xavier , Lucas Rego de Queiroz , Jose Irlandio Sales Alves , Francisco Leonardo Gomes de Menezes ORCID logo , Francisco Franciné Maia Júnior und Sabir Khan
Veröffentlicht/Copyright: 1. November 2023

Abstract

Indeed, the textile dye industry has a significant impact on the global economy, as it is an integral part of the textile and fashion industries. However, this advancement has become a great concern with industrial waste, a good part of these dyes have toxic characteristics to the environment and living beings. The objective of this work is the use of local corn starch as an adsorbent, for the removal of acid violet (AV19), a dye that is highly toxic and carcinogenic in real water samples. The material was characterized by scanning electron microscopy (SEM) and infrared (IR). The optimized parameters were concentration, time, and pH, in which the best results will be obtained at 60 min and pH 7. The experiment was compared to the Langmuir, Freundlich, and Temkin models. The concentration of dye was 4 mg L−1 had the highest removal which was 84.46 %. The prim rate constant is k′ = 0.8592 therefore the adsorption system studied obeys the pseudo-second-order kinetic model. In the next step, we will apply the top-performing starch to environmental samples containing the investigated dye. An analytical curve was constructed in the 2–14 ppm range at a maximum wavelength of 590 nm. The detection limit was 0.541 mg/L, and the percentage recovery was obtained in the range of 95–99.8 % for real water samples.


Corresponding author: Sabir Khan, Department of Natural Sciences, Mathematics and Statistics, Federal University of the Semi-Arid, 59625-900 Mossoró, RN, Brazil, E-mail:

Acknowledgments

The authors would like to express their gratitude for the assistance provided by the Department of Natural Sciences, Mathematics, and Statistics at the Federal Rural University of the Semi-Arid in Mossoró, Rio Grande do Norte, Brazil.

  1. Research ethics: The work does not require ethical approval as no experiments involving human tissue were performed.

  2. Author contributions: Alrivan Gomes do Rêgo Júnior, Íngride Pamilly Ribeiro Araújo de Oliveira, Joalis Barbalho de Souza, Tereza Noêmia Tavares da Fonsêca Melo, Ricardo Alan da Silva Vieira, Ytalo Cleyton dos Santos Souza, Moizes de Souza Xavier, Lucas Rego de Queiroz, Jose Irlandio Sales Alves: Data curation, Formal analysis, Writing – original draft. Francisco Leonardo Gomes de Menezes: Conceptualisation, Methodology, Investigation, Formal analysis, Writing – original draft. Francisco Franciné Maia Júnior: Writing – review & editing, Writing – original draft, resources. Sabir Khan: Conceptualisation, Methodology, Investigation, Formal analysis, Writing – original draft, Supervision, Validation, Writing – review & editing.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

  5. Data availability: No data was used for the research described in the article.

References

1. Guaratini, C. C. I., Zanoni, M. V. B. Quim. Nova 2000, 23, 71; https://doi.org/10.1590/s0100-40422000000100013.Suche in Google Scholar

2. Demirbas, A. J. Hazard. Mater. 2009, 167, 1; https://doi.org/10.1016/j.jhazmat.2008.12.114.Suche in Google Scholar PubMed

3. Cornejo, O. M., Ortiz, M., Aguilar, Z. G., Nava, J. L. Chemosphere 2021, 271, 129804; https://doi.org/10.1016/j.chemosphere.2021.129804.Suche in Google Scholar PubMed

4. Luna Quinto, M., Khan, S., Picasso, G., Taboada Sotomayor, M. D. P. J. Hazard. Mater. 2019, 384, 121374; https://doi.org/10.1016/j.jhazmat.2019.121374.Suche in Google Scholar PubMed

5. Patil, M. R., Khairnar, S. D., Shrivastava, V. S. Appl. Nanosci. 2016, 6, 495; https://doi.org/10.1007/s13204-015-0465-z.Suche in Google Scholar

6. Alshabanat, M., Alsenani, G., Almufarij, R. J. Chem. 2013, 2013, 1; https://doi.org/10.1155/2013/210239.Suche in Google Scholar

7. Hussain, S., Khan, N., Gul, S., Khan, S., Khan, H. Water Chemistry; IntechOpen: UK, 2019; pp. 1–14. https://books.google.com.br/books?hl=en&lr=&id=7Jj8DwAAQBAJ&oi=fnd&pg=PA113&dq=info:jwXuo-sfrMAJ:scholar.google.com&ots=O_26wGw9mv&sig=9R3q6X2X5G7s_72Y_RYYiRNgvLw&redir_esc=y#v=onepage&q&f=true.Suche in Google Scholar

8. Khan, S. U., Khan, H., Anwar, S., Khan, S., Boldrin Zanoni, M. V., Hussain, S. Chemosphere 2020, 253, 126673; https://doi.org/10.1016/j.chemosphere.2020.126673.Suche in Google Scholar PubMed

9. Sartaj, S., Ali, N., Khan, A., Malik, S., Bilal, M., Khan, M., Ali, N., Hussain, S., Khan, H., Khan, S. Water Sci. Technol. 2020, 81, 971; https://doi.org/10.2166/wst.2020.182.Suche in Google Scholar PubMed

10. Hussain, S., Khan, H., Khan, N., Gul, S., Wahab, F., Khan, K. I., Zeb, S., Khan, S., Baddouh, A., Mehdi, S., Maldonado, A. F., Campos, M. Environ. Technol. Innov. 2021, 22, 101509; https://doi.org/10.1016/j.eti.2021.101509.Suche in Google Scholar

11. Gomes, K. M. S., de Oliveira, M. V. G. A., Carvalho, F. R. S., Menezes, C. C., Peron, A. P. Food Sci. Technol. 2013, 33, 218; https://doi.org/10.1590/s0101-20612013005000012.Suche in Google Scholar

12. Yaseen, D. A., Scholz, M. Environ. Sci. Pollut. Res. 2018, 25, 1980; https://doi.org/10.1007/s11356-017-0633-7.Suche in Google Scholar PubMed PubMed Central

13. Aragaw, T. A., Bogale, F. M. Front. Environ. Sci. 2021, 9.10.3389/fenvs.2021.764958Suche in Google Scholar

14. Sadri Moghaddam, S., Alavi Moghaddam, M. R., Arami, M. J. Hazard. Mater. 2010, 175, 651; https://doi.org/10.1016/j.jhazmat.2009.10.058.Suche in Google Scholar PubMed

15. Wijannarong, S., Aroonsrimorakot, S., Thavipoke, P., Kumsopa, C., Sangjan, S. APCBEE Procedia 2013, 5, 279; https://doi.org/10.1016/j.apcbee.2013.05.048.Suche in Google Scholar

16. Marszałek, J., Żyłła, R. Processes 2021, 9, 1833; https://doi.org/10.3390/pr9101833.Suche in Google Scholar

17. Bustos-Terrones, Y. A., Hermosillo-Nevárez, J. J., Ramírez-Pereda, B., Vaca, M., Rangel-Peraza, J. G., Bustos-Terrones, V., Rojas-Valencia, M. N. J. Taiwan Inst. Chem. Eng. 2021, 121, 29; https://doi.org/10.1016/j.jtice.2021.03.041.Suche in Google Scholar

18. Khan, S., Wong, A., Zanoni, M. V. B., Sotomayor, M. D. P. T. Mater. Sci. Eng. C 2019, 103, 109825; https://doi.org/10.1016/j.msec.2019.109825.Suche in Google Scholar PubMed

19. Khan, S., Hussain, S., Wong, A., Foguel, M. V., Gonçalves, L. M., Gurgo, M. I. P., Del Pilar Taboada Sotomayor, M. React. Funct. Polym. 2017, 122, 175; https://doi.org/10.1016/j.reactfunctpolym.2017.11.002.Suche in Google Scholar

20. Carvalho, A. S., Conto, J. F., Campos, K. V., Oliveira, M. R., Brandão, T. G., Egues, S. M. S. Anais do XX Congresso Brasileiro de Engenharia Química; Editora Edgard Blücher: São Paulo, 2015; pp. 13962–13969.10.5151/chemeng-cobeq2014-1302-20003-139970Suche in Google Scholar

21. Jiang, S., Hu, H. Heliyon 2022, 8, e10048; https://doi.org/10.1016/j.heliyon.2022.e10048.Suche in Google Scholar PubMed PubMed Central

22. Lei, W., Liang, J., Tan, P., Yang, S., Fan, L., Han, M., Li, H., Gao, Z. Int. J. Biol. Macromol. 2022, 222, 2054; https://doi.org/10.1016/j.ijbiomac.2022.10.004.Suche in Google Scholar PubMed

23. Mukurala, N., Mokurala, K., Suman, S., Kushwaha, A. K. Nano-Struct. Nano-Objects 2021, 26, 100697; https://doi.org/10.1016/j.nanoso.2021.100697.Suche in Google Scholar

24. Annam Renita, A., Joshua Amarnath, D., Lakshmi Duraikannu, S. Mater. Today Proc. 2021, 43, 3075; https://doi.org/10.1016/j.matpr.2021.01.407.Suche in Google Scholar

25. Aniagor, C. O., Afifi, M. A., Hashem, A. J. Polym. Res. 2021, 28, 405; https://doi.org/10.1007/s10965-021-02772-y.Suche in Google Scholar

26. Benavent-Gil, Y., Rodrigo, D., Rosell, C. M. Carbohydr. Polym. 2018, 197, 558; https://doi.org/10.1016/j.carbpol.2018.06.044.Suche in Google Scholar PubMed

27. Zhang, B., Cui, D., Liu, M., Gong, H., Huang, Y., Han, F. Int. J. Biol. Macromol. 2012, 50, 250; https://doi.org/10.1016/j.ijbiomac.2011.11.002.Suche in Google Scholar PubMed

28. Nascimento, V. X., Schnorr, C., Lütke, S. F., Da Silva, M. C. F., Machado Machado, F., Thue, P. S., Lima, É. C., Vieillard, J., Silva, L. F. O., Dotto, G. L. Molecules 2023, 28, 1821; https://doi.org/10.3390/molecules28041821.Suche in Google Scholar PubMed PubMed Central

29. dos Reis, G. S., Bergna, D., Grimm, A., Lima, E. C., Hu, T., Naushad, M., Lassi, U. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131493; https://doi.org/10.1016/j.colsurfa.2023.131493.Suche in Google Scholar

30. Gong, N., Liu, Y., Huang, R. Int. J. Biol. Macromol. 2018, 115, 580; https://doi.org/10.1016/j.ijbiomac.2018.04.075.Suche in Google Scholar PubMed

31. Akbarnejad, S., Amooey, A. A., Ghasemi, S. Microchem. J. 2019, 149, 103966; https://doi.org/10.1016/j.microc.2019.103966.Suche in Google Scholar

32. Zhou, Y., Hu, X., Zhang, M., Zhuo, X., Niu, J. Ind. Eng. Chem. Res. 2013, 52, 876; https://doi.org/10.1021/ie301742h.Suche in Google Scholar

33. Tan, Q., Jia, X., Dai, R., Chang, H., Woo, M. W., Chen, H. Sep. Purif. Technol. 2023, 320, 124157; https://doi.org/10.1016/j.seppur.2023.124157.Suche in Google Scholar

Received: 2023-09-08
Accepted: 2023-10-10
Published Online: 2023-11-01
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0346/html
Button zum nach oben scrollen