Potential applications of low-cost Brazilian corn starch as an adsorbent for removing the Acid Violet 19 contaminant from river water
-
Alrivan Gomes do Rêgo Júnior
, Francisco Franciné Maia Júnior
Abstract
Indeed, the textile dye industry has a significant impact on the global economy, as it is an integral part of the textile and fashion industries. However, this advancement has become a great concern with industrial waste, a good part of these dyes have toxic characteristics to the environment and living beings. The objective of this work is the use of local corn starch as an adsorbent, for the removal of acid violet (AV19), a dye that is highly toxic and carcinogenic in real water samples. The material was characterized by scanning electron microscopy (SEM) and infrared (IR). The optimized parameters were concentration, time, and pH, in which the best results will be obtained at 60 min and pH 7. The experiment was compared to the Langmuir, Freundlich, and Temkin models. The concentration of dye was 4 mg L−1 had the highest removal which was 84.46 %. The prim rate constant is k′ = 0.8592 therefore the adsorption system studied obeys the pseudo-second-order kinetic model. In the next step, we will apply the top-performing starch to environmental samples containing the investigated dye. An analytical curve was constructed in the 2–14 ppm range at a maximum wavelength of 590 nm. The detection limit was 0.541 mg/L, and the percentage recovery was obtained in the range of 95–99.8 % for real water samples.
Acknowledgments
The authors would like to express their gratitude for the assistance provided by the Department of Natural Sciences, Mathematics, and Statistics at the Federal Rural University of the Semi-Arid in Mossoró, Rio Grande do Norte, Brazil.
-
Research ethics: The work does not require ethical approval as no experiments involving human tissue were performed.
-
Author contributions: Alrivan Gomes do Rêgo Júnior, Íngride Pamilly Ribeiro Araújo de Oliveira, Joalis Barbalho de Souza, Tereza Noêmia Tavares da Fonsêca Melo, Ricardo Alan da Silva Vieira, Ytalo Cleyton dos Santos Souza, Moizes de Souza Xavier, Lucas Rego de Queiroz, Jose Irlandio Sales Alves: Data curation, Formal analysis, Writing – original draft. Francisco Leonardo Gomes de Menezes: Conceptualisation, Methodology, Investigation, Formal analysis, Writing – original draft. Francisco Franciné Maia Júnior: Writing – review & editing, Writing – original draft, resources. Sabir Khan: Conceptualisation, Methodology, Investigation, Formal analysis, Writing – original draft, Supervision, Validation, Writing – review & editing.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
-
Data availability: No data was used for the research described in the article.
References
1. Guaratini, C. C. I., Zanoni, M. V. B. Quim. Nova 2000, 23, 71; https://doi.org/10.1590/s0100-40422000000100013.Suche in Google Scholar
2. Demirbas, A. J. Hazard. Mater. 2009, 167, 1; https://doi.org/10.1016/j.jhazmat.2008.12.114.Suche in Google Scholar PubMed
3. Cornejo, O. M., Ortiz, M., Aguilar, Z. G., Nava, J. L. Chemosphere 2021, 271, 129804; https://doi.org/10.1016/j.chemosphere.2021.129804.Suche in Google Scholar PubMed
4. Luna Quinto, M., Khan, S., Picasso, G., Taboada Sotomayor, M. D. P. J. Hazard. Mater. 2019, 384, 121374; https://doi.org/10.1016/j.jhazmat.2019.121374.Suche in Google Scholar PubMed
5. Patil, M. R., Khairnar, S. D., Shrivastava, V. S. Appl. Nanosci. 2016, 6, 495; https://doi.org/10.1007/s13204-015-0465-z.Suche in Google Scholar
6. Alshabanat, M., Alsenani, G., Almufarij, R. J. Chem. 2013, 2013, 1; https://doi.org/10.1155/2013/210239.Suche in Google Scholar
7. Hussain, S., Khan, N., Gul, S., Khan, S., Khan, H. Water Chemistry; IntechOpen: UK, 2019; pp. 1–14. https://books.google.com.br/books?hl=en&lr=&id=7Jj8DwAAQBAJ&oi=fnd&pg=PA113&dq=info:jwXuo-sfrMAJ:scholar.google.com&ots=O_26wGw9mv&sig=9R3q6X2X5G7s_72Y_RYYiRNgvLw&redir_esc=y#v=onepage&q&f=true.Suche in Google Scholar
8. Khan, S. U., Khan, H., Anwar, S., Khan, S., Boldrin Zanoni, M. V., Hussain, S. Chemosphere 2020, 253, 126673; https://doi.org/10.1016/j.chemosphere.2020.126673.Suche in Google Scholar PubMed
9. Sartaj, S., Ali, N., Khan, A., Malik, S., Bilal, M., Khan, M., Ali, N., Hussain, S., Khan, H., Khan, S. Water Sci. Technol. 2020, 81, 971; https://doi.org/10.2166/wst.2020.182.Suche in Google Scholar PubMed
10. Hussain, S., Khan, H., Khan, N., Gul, S., Wahab, F., Khan, K. I., Zeb, S., Khan, S., Baddouh, A., Mehdi, S., Maldonado, A. F., Campos, M. Environ. Technol. Innov. 2021, 22, 101509; https://doi.org/10.1016/j.eti.2021.101509.Suche in Google Scholar
11. Gomes, K. M. S., de Oliveira, M. V. G. A., Carvalho, F. R. S., Menezes, C. C., Peron, A. P. Food Sci. Technol. 2013, 33, 218; https://doi.org/10.1590/s0101-20612013005000012.Suche in Google Scholar
12. Yaseen, D. A., Scholz, M. Environ. Sci. Pollut. Res. 2018, 25, 1980; https://doi.org/10.1007/s11356-017-0633-7.Suche in Google Scholar PubMed PubMed Central
13. Aragaw, T. A., Bogale, F. M. Front. Environ. Sci. 2021, 9.10.3389/fenvs.2021.764958Suche in Google Scholar
14. Sadri Moghaddam, S., Alavi Moghaddam, M. R., Arami, M. J. Hazard. Mater. 2010, 175, 651; https://doi.org/10.1016/j.jhazmat.2009.10.058.Suche in Google Scholar PubMed
15. Wijannarong, S., Aroonsrimorakot, S., Thavipoke, P., Kumsopa, C., Sangjan, S. APCBEE Procedia 2013, 5, 279; https://doi.org/10.1016/j.apcbee.2013.05.048.Suche in Google Scholar
16. Marszałek, J., Żyłła, R. Processes 2021, 9, 1833; https://doi.org/10.3390/pr9101833.Suche in Google Scholar
17. Bustos-Terrones, Y. A., Hermosillo-Nevárez, J. J., Ramírez-Pereda, B., Vaca, M., Rangel-Peraza, J. G., Bustos-Terrones, V., Rojas-Valencia, M. N. J. Taiwan Inst. Chem. Eng. 2021, 121, 29; https://doi.org/10.1016/j.jtice.2021.03.041.Suche in Google Scholar
18. Khan, S., Wong, A., Zanoni, M. V. B., Sotomayor, M. D. P. T. Mater. Sci. Eng. C 2019, 103, 109825; https://doi.org/10.1016/j.msec.2019.109825.Suche in Google Scholar PubMed
19. Khan, S., Hussain, S., Wong, A., Foguel, M. V., Gonçalves, L. M., Gurgo, M. I. P., Del Pilar Taboada Sotomayor, M. React. Funct. Polym. 2017, 122, 175; https://doi.org/10.1016/j.reactfunctpolym.2017.11.002.Suche in Google Scholar
20. Carvalho, A. S., Conto, J. F., Campos, K. V., Oliveira, M. R., Brandão, T. G., Egues, S. M. S. Anais do XX Congresso Brasileiro de Engenharia Química; Editora Edgard Blücher: São Paulo, 2015; pp. 13962–13969.10.5151/chemeng-cobeq2014-1302-20003-139970Suche in Google Scholar
21. Jiang, S., Hu, H. Heliyon 2022, 8, e10048; https://doi.org/10.1016/j.heliyon.2022.e10048.Suche in Google Scholar PubMed PubMed Central
22. Lei, W., Liang, J., Tan, P., Yang, S., Fan, L., Han, M., Li, H., Gao, Z. Int. J. Biol. Macromol. 2022, 222, 2054; https://doi.org/10.1016/j.ijbiomac.2022.10.004.Suche in Google Scholar PubMed
23. Mukurala, N., Mokurala, K., Suman, S., Kushwaha, A. K. Nano-Struct. Nano-Objects 2021, 26, 100697; https://doi.org/10.1016/j.nanoso.2021.100697.Suche in Google Scholar
24. Annam Renita, A., Joshua Amarnath, D., Lakshmi Duraikannu, S. Mater. Today Proc. 2021, 43, 3075; https://doi.org/10.1016/j.matpr.2021.01.407.Suche in Google Scholar
25. Aniagor, C. O., Afifi, M. A., Hashem, A. J. Polym. Res. 2021, 28, 405; https://doi.org/10.1007/s10965-021-02772-y.Suche in Google Scholar
26. Benavent-Gil, Y., Rodrigo, D., Rosell, C. M. Carbohydr. Polym. 2018, 197, 558; https://doi.org/10.1016/j.carbpol.2018.06.044.Suche in Google Scholar PubMed
27. Zhang, B., Cui, D., Liu, M., Gong, H., Huang, Y., Han, F. Int. J. Biol. Macromol. 2012, 50, 250; https://doi.org/10.1016/j.ijbiomac.2011.11.002.Suche in Google Scholar PubMed
28. Nascimento, V. X., Schnorr, C., Lütke, S. F., Da Silva, M. C. F., Machado Machado, F., Thue, P. S., Lima, É. C., Vieillard, J., Silva, L. F. O., Dotto, G. L. Molecules 2023, 28, 1821; https://doi.org/10.3390/molecules28041821.Suche in Google Scholar PubMed PubMed Central
29. dos Reis, G. S., Bergna, D., Grimm, A., Lima, E. C., Hu, T., Naushad, M., Lassi, U. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131493; https://doi.org/10.1016/j.colsurfa.2023.131493.Suche in Google Scholar
30. Gong, N., Liu, Y., Huang, R. Int. J. Biol. Macromol. 2018, 115, 580; https://doi.org/10.1016/j.ijbiomac.2018.04.075.Suche in Google Scholar PubMed
31. Akbarnejad, S., Amooey, A. A., Ghasemi, S. Microchem. J. 2019, 149, 103966; https://doi.org/10.1016/j.microc.2019.103966.Suche in Google Scholar
32. Zhou, Y., Hu, X., Zhang, M., Zhuo, X., Niu, J. Ind. Eng. Chem. Res. 2013, 52, 876; https://doi.org/10.1021/ie301742h.Suche in Google Scholar
33. Tan, Q., Jia, X., Dai, R., Chang, H., Woo, M. W., Chen, H. Sep. Purif. Technol. 2023, 320, 124157; https://doi.org/10.1016/j.seppur.2023.124157.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- A review on application of green nanoparticles from neem and eucalyptus
- Original Papers
- The effects of vitamins C and E on the redox parameters of cytochrome P450 3A4
- A novel near-infrared fluorescent probe for cysteine and application in bioimaging
- Development of TiO2/Al2O3 based Mg composite materials: properties and applications
- Radio-lytic degradation of reactive dyes in aqueous solution: comparative analysis using gamma/H2O2 and UV/H2O2 processes
- Adsorption of pentabromodiphenylether pollutant by metals (Si, Ge, Sn) encapsulated Zn12O12 nanoclusters: a computational study
- DFT, molecular docking and molecular dynamics simulations of 2-imino-4-oxo-1,3-thiazolidine hydrochloride and its activity against Bacillus pasteurii urease
- Potential applications of low-cost Brazilian corn starch as an adsorbent for removing the Acid Violet 19 contaminant from river water
- Silver, copper, and cobalt trimetallic nanoparticles; synthesis, characterization and its application as adsorbent for acid blue 7 dye
- Unraveling the surface activity and micellization characteristics of linear alkyl benzene sulfonate in aqueous solution
Artikel in diesem Heft
- Frontmatter
- Review Article
- A review on application of green nanoparticles from neem and eucalyptus
- Original Papers
- The effects of vitamins C and E on the redox parameters of cytochrome P450 3A4
- A novel near-infrared fluorescent probe for cysteine and application in bioimaging
- Development of TiO2/Al2O3 based Mg composite materials: properties and applications
- Radio-lytic degradation of reactive dyes in aqueous solution: comparative analysis using gamma/H2O2 and UV/H2O2 processes
- Adsorption of pentabromodiphenylether pollutant by metals (Si, Ge, Sn) encapsulated Zn12O12 nanoclusters: a computational study
- DFT, molecular docking and molecular dynamics simulations of 2-imino-4-oxo-1,3-thiazolidine hydrochloride and its activity against Bacillus pasteurii urease
- Potential applications of low-cost Brazilian corn starch as an adsorbent for removing the Acid Violet 19 contaminant from river water
- Silver, copper, and cobalt trimetallic nanoparticles; synthesis, characterization and its application as adsorbent for acid blue 7 dye
- Unraveling the surface activity and micellization characteristics of linear alkyl benzene sulfonate in aqueous solution