Startseite Adsorption of pentabromodiphenylether pollutant by metals (Si, Ge, Sn) encapsulated Zn12O12 nanoclusters: a computational study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adsorption of pentabromodiphenylether pollutant by metals (Si, Ge, Sn) encapsulated Zn12O12 nanoclusters: a computational study

  • Onyebuenyi I. Brown , Maxwell-Borjor A. Eba , John A. Agwupuye , Terkumbur E. Gber EMAIL logo , Immaculata J. Ikot , Joseph O. Odey , Dorncklaimz E. Enamhe , Adedapo S. Adeyinka und Hitler Louis EMAIL logo
Veröffentlicht/Copyright: 13. November 2023

Abstract

In recent times, the use of nano-materials as detectors and sensors for various environmental systems is constantly being explored; however, the detection limit of most analytical instruments remains below the mark of 100 % efficiency. As a result, the efficacy of Zn 12 O 12 , Si dop Zn 12 O 12 , Ge dop Zn 12 O 12 , Sn dop Zn 12 O 12 and Pb dop Zn 12 O 12 nanostructured materials is examined in this work to detect 2,2,4,4,5-pentabromodiphenylether (dbph). Density functional theory (DFT) utilizing the ωB97XD/def2svp method was employed to investigate the sensor properties and adsorption potency of the nano-materials under consideration. Interestingly, dbph@Zn 12 O 12 emerged the best candidate for the efficient sensing of dbph with highest adsorption energy and minimal adsorption distance of −0.0554 kJ/mol and 2.8324 Å respectively. In the same vein, dbph@Zn 12 O 12 was shown to have the greatest stability, conductivity and least reactivity with energy gap value of 8.3299 eV for the adsorption of dbph. More so, the predominance of strong electrostatic bonds in the chemical interactions of the electrons in the QTAIM analysis follows the order; dbph@Zn 12 O 12  > dbph@Sn dop Zn 12 O 12  > dbph@Pb dop Zn 12 O 12  > dbph@Ge dop Zn 12 O 12  > dbph@Si dop Zn 12 O 12 . It follows from the data obtained herein that dbph@Zn 12 O 12 complex is the most stable and energetically favorable for the adsorption of dbph. This showed that Zn12O12 is a potential nanomaterial for detecting the presence of dbph compared to the studied nanomaterials.


Corresponding authors: Terkumbur E. Gber, Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; and Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria, E-mail: ; and Hitler Louis, Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria; and Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India, E-mail:

Funding source: Governmental or Non-Governmental Agency

Acknowledgments

The authors would like to acknowledge the centre for high performance computing (CHPC), at the University of Johannesburg, South Africa for providing computational resources for this research project.

  1. Research ethics: Not applicable.

  2. Consent for publication: Not applicable.

  3. Author contributions: Hitler Louis: Project conceptualization, analysis, design, and supervision. Onyebuenyi I. Brown and John A. Agwupuye: Writing, results extraction, analysis, and manuscript first draft. Maxwell A. Eba and Terkumbur E. Gber: Writing, Manuscript final draft, Review and Editing. Joseph O. Odey and Adedapo S Adeyinka: Resources, and proof-reading.

  4. Competing interests: All authors declare zero financial or inter-personal conflict of interest that could have influenced the research work or results reported in this research paper.

  5. Research funding: This research was not funded by any Governmental or Non-Governmental Agency.

  6. Data availability: All data are contained within the manuscript.

References

1. Naseer, M. N., Jaafar, J., Junoh, H., Zaidi, A. A., Kumar, M., Alqahtany, A., Aldossary, N. A. Metal-organic frameworks for wastewater decontamination: discovering intellectual structure and research trends. Materials 2022, 15, 5053; https://doi.org/10.3390/ma15145053.Suche in Google Scholar PubMed PubMed Central

2. Singh, K. K., Singh, A., Rai, S. A study on nanomaterials for water purification. Mater. Today Proc. 2022, 51, 1157–1163; https://doi.org/10.1016/j.matpr.2021.07.116.Suche in Google Scholar

3. Gupta, M., Chaudhary, P., Singh, A., Verma, A., Yadav, D., Yadav, B. C. Development of MoO3–CdO nanoparticles-based sensing device for the detection of harmful acetone levels in our skin and body via nail paint remover. Sensor. Actuator. B Chem. 2022, 368, 132102; https://doi.org/10.1016/j.snb.2022.132102.Suche in Google Scholar

4. Krishnan, K., Adamou, T., Aylward, L. L., Hays, S. M., Kirman, C. R., Nong, A. Biomonitoring equivalents for 2, 2′, 4, 4′, 5-pentabromodiphenylether (PBDE-99). Regul. Toxicol. Pharmacol. 2011, 60, 165–171; https://doi.org/10.1016/j.yrtph.2011.03.011.Suche in Google Scholar PubMed

5. Jinhui, L., Yuan, C., Wenjing, X. Polybrominateddiphenyl ethers in articles: a review of its applications and legislation. Environ. Sci. Pollut. Res. 2017, 24, 4312–4321; https://doi.org/10.1007/s11356-015-4515-6.Suche in Google Scholar PubMed

6. Turner, A. PBDEs in the marine environment: sources, pathways and the role of microplastics. Environ. Pollut. 2022, 301, 118943; https://doi.org/10.1016/j.envpol.2022.118943.Suche in Google Scholar PubMed

7. Ohoro, C. R., Adeniji, A. O., Okoh, A. I., Okoh, O. O. Polybrominateddiphenyl ethers in the environmental systems: a review. J. Environ. Health Sci. Eng. 2021, 19, 1229–1247; https://doi.org/10.1007/s40201-021-00656-3.Suche in Google Scholar PubMed PubMed Central

8. Zhao, X., Zhang, Y., Hou, Z., Wang, L. Chloride-promoted photoelectrochemical C–H silylation of heteroarenes. Chin. J. Chem. 2023, 41, 2963–2968; https://doi.org/10.1002/cjoc.202300288.Suche in Google Scholar

9. Bhat, S. A., Sher, F., Hameed, M., Bashir, O., Kumar, R., Vo, D. V. N., Lima, E. C. Sustainable nanotechnology-based wastewater treatment strategies: achievements, challenges and future perspectives. Chemosphere 2022, 288, 132606; https://doi.org/10.1016/j.chemosphere.2021.132606.Suche in Google Scholar PubMed

10. Zhang, Z., Feng, L., Liu, H., Wang, L., Wang, S., Tang, Z. Mo6+–P5+ co-doped Li2ZnTi3O8 anode for Li-storage in a wide temperature range and applications in LiNi0.5Mn1.5O4/Li2ZnTi3O8 full cells. Inorg. Chem. Front. 2022, 9, 35–43; https://doi.org/10.1039/d1qi01077h.Suche in Google Scholar

11. Ramalingam, A., Sambandam, S., Medimagh, M., Al-Dossary, O., Issaoui, N., Wojcik, M. J. Study of a new piperidone as an anti-Alzheimer agent: molecular docking, electronic and intermolecular interaction investigations by DFT method. J. King Saud Univ. Sci. 2021, 33, 101632; https://doi.org/10.1016/j.jksus.2021.101632.Suche in Google Scholar

12. Issaoui, N., Ghalla, H., Bardak, F., Karabacak, M., Dlala, N. A., Flakus, H. T., Oujia, B. Combined experimental and theoretical studies on the molecular structures, spectroscopy, and inhibitor activity of 3-(2-thienyl) acrylic acid through AIM, NBO, FT-IR, FT-Raman, UV and HOMO-LUMO analyses, and molecular docking. J. Mol. Struct. 2017, 1130, 659–668; https://doi.org/10.1016/j.molstruc.2016.11.019.Suche in Google Scholar

13. Dong, Y., Yuan, H., Ge, D., Zhu, N. A novel conditioning approach for amelioration of sludge dewaterability using activated carbon strengthening electrochemical oxidation and realized mechanism. Water Res. 2022, 220, 118704; https://doi.org/10.1016/j.watres.2022.118704.Suche in Google Scholar PubMed

14. Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y., Ma, Q. Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater. Char. 2021, 171, 110732; https://doi.org/10.1016/j.matchar.2020.110732.Suche in Google Scholar

15. Ghenaatian, H. R., Baei, M. T., Hashemian, S. Zn12O12 nano-cage as a promising adsorbent for CS2 capture. Superlattice. Microst. 2013, 58, 198–204; https://doi.org/10.1016/j.spmi.2013.03.006.Suche in Google Scholar

16. Mukhlif, B. A., Patra, I., Kumar, T. C. A., Sivaraman, R., Saadoon, N., Obaid, N. H., Bharath Kumar, N., Mustafa, Y. F. Investigate the effect of Zn12O12, AlZn11O12, and GaZn11O12 nanoclusters in the carbamazepine drug detection in gas and solvent phases: a comparative DFT study. Monatsh. Chem.-Chem. Mon. 2023, 154, 171–179; https://doi.org/10.1007/s00706-022-03025-4.Suche in Google Scholar

17. Mohammadi, M. D., Louis, H., Chukwu, U. G., Bhowmick, S., Rasaki, M. E., Biskos, G. Gas-phase interaction of CO, CO2, H2S, NH3, NO, NO2, and SO2 with Zn12O12 and Zn24 atomic clusters. ACS Omega 2023, 8, 20621; https://doi.org/10.1021/acsomega.3c01177.Suche in Google Scholar PubMed PubMed Central

18. Hoseininezhad-Namin, M. S., Javanshir, Z., Rahimpour, E., Jouyban, A. Investigation on the potential application of some metal oxide nanoclusters in the detection of phenytoin in gas and solvent phases through density functional theory calculations. Inorg. Chem. Commun. 2023, 150, 110526; https://doi.org/10.1016/j.inoche.2023.110526.Suche in Google Scholar

19. Yekta, M., Zanjanchi, M. A., Roohi, H., Askari Ardehjani, N. Adsorption and sensing of CS2, H2S and COS gases by pure and metal (Cr, Fe, Ni and Zn) doped GaN nanosheets: a DFT-D study. Mol. Phys. 2023, 121, e2203781; https://doi.org/10.1080/00268976.2023.2203781.Suche in Google Scholar

20. Sagaama, A., Issaoui, N., Al-Dossary, O., Kazachenko, A. S., Wojcik, M. J. Non covalent interactions and molecular docking studies on morphine compound. J. King Saud Univ. Sci. 2021, 33, 101606; https://doi.org/10.1016/j.jksus.2021.101606.Suche in Google Scholar

21. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Kazachenko, A. S., Miroshnokova, A. V., Xiang, Z. Hydrogen bonds interactions in biuret-water clusters: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NLO analysis. J. King Saud Univ. Sci. 2022, 34, 102350; https://doi.org/10.1016/j.jksus.2022.102350.Suche in Google Scholar

22. Navale, S., Shahbaz, M., Majhi, S. M., Mirzaei, A., Kim, H. W., Kim, S. S. CuxO nanostructure-based gas sensors for H2S detection: an overview. Chemosensors 2021, 9, 127; https://doi.org/10.3390/chemosensors9060127.Suche in Google Scholar

23. Wei, A., Pan, L., Huang, W. Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 2011, 176, 1409–1421; https://doi.org/10.1016/j.mseb.2011.09.005.Suche in Google Scholar

24. Patil, V. L., Vanalakar, S. A., Kamble, A. S., Shendage, S. S., Kim, J. H., Patil, P. S. Farming of maize-like zinc oxide via a modified SILAR technique as a selective and sensitive nitrogen dioxide gas sensor. RSC Adv. 2016, 6, 90916–90922; https://doi.org/10.1039/c6ra06346b.Suche in Google Scholar

25. Liang, Y., Li, J., Xue, Y., Tan, T., Jiang, Z., He, Y., Shangguan, W., Yang, J., Pan, Y. Benzene decomposition by non-thermal plasma: a detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations. J. Hazard. Mater. 2021, 420, 126584; https://doi.org/10.1016/j.jhazmat.2021.126584.Suche in Google Scholar PubMed

26. Hu, J., Zhao, L., Luo, J., Gong, H., Zhu, N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: modifications, applications and perspectives. J. Hazard. Mater. 2022, 438, 129437; https://doi.org/10.1016/j.jhazmat.2022.129437.Suche in Google Scholar PubMed

27. Bai, B., Rao, D., Chang, T., Guo, Z. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J. Hydrol. 2019, 578, 124080; https://doi.org/10.1016/j.jhydrol.2019.124080.Suche in Google Scholar

28. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J.; Gaussian, Inc: Wallingford CT, 2016.Suche in Google Scholar

29. Dennington, R. D. I. I., Keith, T. A., Millam, J. M. Gaussview, version 6.0. 16; Semichem Inc Shawnee Mission KS, 2016.Suche in Google Scholar

30. Louis, H., Chima, C. M., Amodu, I. O., Gber, T. E., Unimuke, T. O., Adeyinka, A. S. Organochlorine detection on transition metals (X = Zn, Ti, Ni, Fe, and Cr) anchored fullerenes (C23X). ChemistrySelect 2023, 8, e202203843; https://doi.org/10.1002/slct.202203843.Suche in Google Scholar

31. Jaiswal, A., Sahoo, R. K., Ray, S. S., Sahu, S. Alkali metals decorated silicon clusters (SinMn, n = 6, 10; M = Li, Na) as potential hydrogen storage materials: a DFT study. Int. J. Hydrogen Energy 2022, 47, 1775–1789; https://doi.org/10.1016/j.ijhydene.2021.10.228.Suche in Google Scholar

32. Lu, T., Chen, Q. A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 2020, 139, 1–12; https://doi.org/10.1007/s00214-019-2541-z.Suche in Google Scholar

33. Akpe, M. A., Louis, H., Gber, T. E., Chima, C. M., Brown, O. I., Adeyinka, A. S. Modeling of Cu, Ag, and Au-decorated Al12Se12 nanostructured as sensor materials for trapping of chlorpyrifos insecticide. Comput. Theor. Chem. 2023, 1226, 114218; https://doi.org/10.1016/j.comptc.2023.114218.Suche in Google Scholar

34. Deschenes, L. A., Vanden, D. A. Bout University of Texas, Austin. Origin 6.0: Scientific Data Analysis and Graphing Software Origin Lab Corporation (formerly Microcal Software, Inc.), 2000. www.originlab.com.Commercialprice:595.Academicprice:446.10.1021/ja004761dSuche in Google Scholar

35. Lu, J., Chen, Y., Ding, M., Fan, X., Hu, J., Chen, Y., Li, J., Li, Z., Liu, W. A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr. Polym. 2022, 277, 118871; https://doi.org/10.1016/j.carbpol.2021.118871.Suche in Google Scholar PubMed

36. Louis, H., Ekereke, E. E., Isang, B. B., Ikeuba, A. I., Amodu, I. O., Gber, T. E., Owen, A. E., Adeyinka, A. S., Agwamba, E. C. Assessing the performance of Al12N12 and Al12P12 nanostructured materials for alkali metal ion (Li, Na, K) batteries. ACS Omega 2022, 7, 46183–46202; https://doi.org/10.1021/acsomega.2c04319.Suche in Google Scholar PubMed PubMed Central

37. Li, H., Si, S., Yang, K., Mao, Z., Sun, Y., Cao, X., Yu, H., Zhang, J., Ding, C., Liang, H., Wu, L. Hexafluoroisopropanol based silk fibroin coatings on AZ31 biometals with enhanced adhesion, corrosion resistance and biocompatibility. Prog. Org. Coating. 2023, 184, 107881; https://doi.org/10.1016/j.porgcoat.2023.107881.Suche in Google Scholar

38. Eno, E. A., Cheng, C. R., Louis, H., Gber, T. E., Emori, W., Ita, I. A. T., Unimke, T. O., Ling, L., Adalikwu, S. A., Agwamba, E. C., Adeyinka, A. S. Investigation on the molecular, electronic and spectroscopic properties of rosmarinic acid: an intuition from an experimental and computational perspective. J. Biomol. Struct. Dyn. 2022, 1–15; https://doi.org/10.1080/07391102.2022.2154841.Suche in Google Scholar PubMed

39. Mohammadi, M. D., Abbas, F., Louis, H., Afahanam, L. E., Gber, T. E. Intermolecular interactions between nitrosourea and polyoxometalate compounds. ChemistrySelect 2022, 7, e202202535; https://doi.org/10.1002/slct.202202535.Suche in Google Scholar

40. Chen, D., Li, Y., Li, X., Hong, X., Fan, X., Savidge, T. Key difference between transition state stabilization and ground state destabilization: increasing atomic charge densities before or during enzyme-substrate binding. Chem. Sci. 2022, 13, 8193–8202; https://doi.org/10.1039/D2SC01994A.Suche in Google Scholar PubMed PubMed Central

41. Undiandeye, U. J., Inah, B. E., Godfrey, O. C., Emori, W., Anna, I., Okoro, B. C., Gber Terkumbur, E., Emmanuel, E., Louis, H. Antilymphoma activities of benzo bisthiazole derivative by molecular docking, impact of solvation, quantum chemical study, and spectroscopic (FT-IR, UV, NMR) investigation. Chem. Phys. Impact 2023, 7, 100290; https://doi.org/10.1016/j.chphi.2023.100290.Suche in Google Scholar

42. Kong, L., Liu, G. Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter Radiat. Extremes 2021, 6, 68202; https://doi.org/10.1063/5.0071856.Suche in Google Scholar

43. Louis, H., Etiese, D., Unimuke, T. O., Owen, A. E., Rajee, A. O., Gber, T. E., Chima, C. M., Eno, E. A., Nfor, E. N. Computational design and molecular modeling of the interaction of nicotinic acid hydrazide nickel-based complexes with H2S gas. RSC Adv. 2022, 12, 30365–30380; https://doi.org/10.1039/d2ra05456f.Suche in Google Scholar PubMed PubMed Central

44. Gber, T. E., Louis, H., Ngana, O. C., Amodu, I. O., Ekereke, E. E., Benjamin, I., Adalikwu, S. A., Adeyinka, A. Yttrium-and zirconium-decorated Mg12O12–X (X = Y, Zr) nanoclusters as sensors for diazomethane (CH2N2) gas. RSC Adv. 2023, 13, 25391–25407; https://doi.org/10.1039/d3ra02939e.Suche in Google Scholar PubMed PubMed Central

45. Jomaa, I., Issaoui, N., Roisnel, T., Marouani, H. Insight into non-covalent interactions in a tetrachlorocadmate salt with promising NLO properties: experimental and computational analysis. J. Mol. Struct. 2021, 1242, 130730; https://doi.org/10.1016/j.molstruc.2021.130730.Suche in Google Scholar

46. Weinhold, F., Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press, 2005.Suche in Google Scholar

47. Eno, E. A., Louis, H., Unimuke, T. O., Gber, T. E., Mbonu, I. J., Ndubisi, C. J., Adalikwu, S. A. Reactivity, stability, and thermodynamics of para-methylpyridinium-based ionic liquids: insight from DFT, NCI, and QTAIM. J. Ionic Liq. 2022, 2, 100030; https://doi.org/10.1016/j.jil.2022.100030.Suche in Google Scholar

48. Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z., Zhen, J., Lin, Z., Wang, C. Treatment of CrVI-containing Mg(OH)2 nanowaste. Angew. Chem. Int. Ed. 2008, 47, 5619–5622; https://doi.org/10.1002/anie.200800172.Suche in Google Scholar PubMed

49. Gber, T. E., Etinwa, B., Benjamin, I., Ekereke, E., Offiong, O. E., Adeyinka, A. S., Louis, H. Functionalized boron doped graphene (BGP) as smart nanocarrier for delivery of hydroxyurea (HU) drug. Chem. Phys. Impact 2023, 7, 100291; https://doi.org/10.1016/j.chphi.2023.100291.Suche in Google Scholar

50. Louis, H., Isang, B. B., Unimuke, T. O., Gber, T. E., Amodu, I. O., Ikeuba, A. I., Adeyinka, A. S. Modeling of Al12N12, Mg12O12, Ca12O12, and C23N nanostructured as potential anode materials for sodium-ion battery. J. Solid State Electrochem. 2022, 27, 1–13; https://doi.org/10.1007/s10008-022-05300-0.Suche in Google Scholar

51. Yao, H., Sun, Z., Liang, L., Yan, X., Wang, Y., Yang, M., Hu, X., Wang, Z., Li, Z., Wang, M., Huang, C., Yang, Q., Tian, Z., Yao, J. Hybrid metasurface using graphene/graphitic carbon nitride heterojunctions for ultrasensitive terahertz biosensors with tunable energy band structure. Photon. Res. 2023, 11, 858–868; https://doi.org/10.1364/PRJ.482256.Suche in Google Scholar

52. Odey, D. O., Edet, H. O., Louis, H., Gber, T. E., Nwagu, A. D., Adalikwu, S. A., Adeyinka, A. S. Heteroatoms (B, N, P) doped on nickel-doped graphene for phosgene (COCl2) adsorption: insight from theoretical calculations. Mater. Today Sustain. 2022, 21, 100294; https://doi.org/10.1016/j.mtsust.2022.100294.Suche in Google Scholar

53. Chen, D., Wang, Q., Li, Y., Li, Y., Zhou, H., Fan, Y. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 2020, 247, 125869; https://doi.org/10.1016/j.chemosphere.2020.125869.Suche in Google Scholar PubMed

54. Ogunwale, G. J., Louis, H., Gber, T. E., Adeyinka, A. S. Modeling of pristine, Ir-and Au-decorated C60 fullerenes as sensors for detection of hydroxyurea and nitrosourea drugs. J. Environ. Chem. Eng. 2022, 10, 108802; https://doi.org/10.1016/j.jece.2022.108802.Suche in Google Scholar

55. Abdelmoulahi, H., Ghalla, H., Brandán, S. A., Nasr, S. Structural study and vibrational analyses of the monomeric, dimeric, trimeric and tetrameric species of acetamide by using the FT-IR and Raman spectra, DFT calculations and SQM methodology. J. Mater. Environ. Sci. 2020, 6, 30943109.Suche in Google Scholar

56. Tang, T., Zhou, M., Lv, J., Cheng, H., Wang, H., Qin, D., Hu, G., Liu, X. Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf. B Biointerfaces 2022, 216, 112538; https://doi.org/10.1016/j.colsurfb.2022.112538.Suche in Google Scholar PubMed

57. Oyo-Ita, I., Louis, H., Nsofor, V. C., Edet, H. O., Gber, T. E., Ogungbemiro, F. O., Adeyinka, A. S. Studies on transition metals (Rh, Ir, Co) doped silicon carbide nanotubes (SiCNT) for the detection and adsorption of acrolein: insight from DFT approach. Mater. Sci. Eng. B 2023, 296, 116668; https://doi.org/10.1016/j.mseb.2023.116668.Suche in Google Scholar

58. Utsu, P. M., Anyama, C. A., Gber, T. E., Ayi, A. A., Louis, H. Modeling of transition metals coordination polymers of benzene tricarboxylate and pyridyl oxime-based ligands for application as antibacterial agents. J. Indian Chem. Soc. 2023, 100, 100993; https://doi.org/10.1016/j.jics.2023.100993.Suche in Google Scholar

59. Agwamba, E. C., Louis, H., Olagoke, P. O., Gber, T. E., Okon, G. A., Fidelis, C. F., Adeyinka, A. S. Modeling of magnesium-decorated graphene quantum dot nanostructure for trapping AsH3, PH3 and NH3 gases. RSC Adv. 2023, 13, 13624–13641; https://doi.org/10.1039/d3ra01279d.Suche in Google Scholar PubMed PubMed Central

60. Chen, P., Yang, J., Rao, Z., Wang, Q., Tang, H., Pan, Y., Liang, Y. Efficient in-situ conversion of low-concentration carbon dioxide in exhaust gas using silver nanoparticles in N-heterocyclic carbene polymer. J. Colloid Interface Sci. 2023, 652, 866–877; https://doi.org/10.1016/j.jcis.2023.08.131.Suche in Google Scholar PubMed

61. Louis, H., Ikenyirimba, O. J., Unimuke, T. O., Mathias, G. E., Gber, T. E., Adeyinka, A. S. Electrocatalytic activity of metal encapsulated, doped, and engineered fullerene-based nanostructured materials towards hydrogen evolution reaction. Sci. Rep. 2022, 12, 1–21; https://doi.org/10.1038/s41598-022-20048-3.Suche in Google Scholar PubMed PubMed Central

62. Wang, Z., Chen, C., Liu, H., Hrynshpan, D., Savitskaya, T., Chen, J., Chen, J. Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci. Total Environ. 2020, 708, 135063; https://doi.org/10.1016/j.scitotenv.2019.135063.Suche in Google Scholar PubMed

63. Bassey, V. M., Apebende, C. G., Idante, P. S., Louis, H., Emori, W., Cheng, C. R., Agwupuye, J. A., Unimuke, T. O., Wei, K., Asogwa, F. C. Vibrational characterization and molecular electronic investigations of 2-acetyl-5-methylfuran using FT-IR, FT-Raman, UV–VIS, NMR, and DFT methods. J. Fluoresc. 2022, 32, 1005–1017; https://doi.org/10.1007/s10895-022-02903-8.Suche in Google Scholar PubMed

64. Li, T., Pang, H., Wu, Q., Huang, M., Xu, J., Zheng, L., Wang, B., Qiao, Y. Rigid Schiff base complex supermolecular aggregates as a high-performance pH probe: study on the enhancement of the aggregation-caused quenching (ACQ) effect via the substitution of halogen atoms. Int. J. Mol. Sci. 2022, 23, 6259; https://doi.org/10.3390/ijms23116259.Suche in Google Scholar PubMed PubMed Central

65. Mao, S., Song, J., Zhu, W., Li, H., Pang, J., Dang, D., Bai, Y. Heterogeneous oxidative desulfurization of fuels using amphiphilic mesoporous phosphomolybdate-based poly(ionic liquid) over a wide temperature range. Fuel 2023, 352, 128982; https://doi.org/10.1016/j.fuel.2023.128982.Suche in Google Scholar

66. Louis, H., Gber, T. E., Asogwa, F. C., Eno, E. A., Unimuke, T. O., Bassey, V. M., Ita, B. I. Understanding the lithiation mechanisms of pyrenetetrone-based carbonyl compound as cathode material for lithium-ion battery: insight from first principle density functional theory. Mater. Chem. Phys. 2022, 278, 125518; https://doi.org/10.1016/j.matchemphys.2021.125518.Suche in Google Scholar

67. Gber, T. E., Louis, H., Owen, A. E., Etinwa, B. E., Benjamin, I., Asogwa, F. C., Orosun, M. M., Eno, E. A. Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS2 for NH3 gas detection. RSC Adv. 2022, 12, 25992–26010; https://doi.org/10.1039/d2ra04028j.Suche in Google Scholar PubMed PubMed Central

68. Louis, H., Amodu, I. O., Unimuke, T. O., Gber, T. E., Isang, B. B., Adeyinka, A. S. Modeling of Ca12O12, Mg12O12, and Al12N12 nanostructured materials as sensors for phosgene (Cl2CO). Mater. Today Commun. 2022, 32, 103946; https://doi.org/10.1016/j.mtcomm.2022.103946.Suche in Google Scholar

69. Zhang, L., Qin, D., Feng, J., Tang, T., Cheng, H. Rapid quantitative detection of luteolin using an electrochemical sensor based on electrospinning of carbon nanofibers doped with single-walled carbon nanoangles. Anal. Methods 2023, 15, 3073–3083; https://doi.org/10.1039/D3AY00497J.Suche in Google Scholar PubMed

70. Wang, Z., Hu, L., Zhao, M., Dai, L., Hrynsphan, D., Tatsiana, S., Chen, J. Bamboo charcoal fused with polyurethane foam for efficiently removing organic solvents from wastewater: experimental and simulation. Biochar 2022, 4, 28; https://doi.org/10.1007/s42773-022-00153-2.Suche in Google Scholar

71. Louis, H., Charlie, D. E., Amodu, I. O., Benjamin, I., Gber, T. E., Agwamba, E. C., Adeyinka, A. S. Probing the reactions of thiourea (CH4N2S) with metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) anchored on fullerene surfaces (C59X). ACS Omega 2022, 7, 35118–35135; https://doi.org/10.1021/acsomega.2c04044.Suche in Google Scholar PubMed PubMed Central

72. Kong, L., Liu, Y., Dong, L., Zhang, L., Qiao, L., Wang, W., You, H. Enhanced red luminescence in CaAl12O19:Mn4+via doping Ga3+ for plant growth lighting. Dalton Trans. 2020, 49, 1947–1954; https://doi.org/10.1039/C9DT04086B.Suche in Google Scholar PubMed

73. Zhou, Q., Yong, Y., Ju, W., Su, X., Li, X., Wang, C., Fu, Z. DFT study of the adsorption of 2, 3, 7, 8-tetrachlorodibenzofuran (TCDF) on vacancy-defected graphene doped with Mn and Fe. Curr. Appl. Phys. 2018, 18, 61–67; https://doi.org/10.1016/j.cap.2017.10.011.Suche in Google Scholar

74. Zheng, Y., Liu, Y., Guo, X., Chen, Z., Zhang, W., Wang, Y., Tang, X., Zhang, Y., Zhao, Y. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J. Mater. Sci. Technol. 2020, 41, 117–126; https://doi.org/10.1016/j.jmst.2019.09.018.Suche in Google Scholar

75. Inah, B. E., Eze, J. F., Louis, H., Edet, H. O., Gber, T. E., Eno, E. A., Etim, A. N., Adeyinka, A. S. Adsorption and gas-sensing investigation of oil dissolved gases onto nitrogen and sulfur doped graphene quantum dots. Chem. Phys. Impact 2023, 7, 100265; https://doi.org/10.1016/j.chphi.2023.100265.Suche in Google Scholar

76. Gber, T. E., Agida, C. A., Louis, H., Ashishie, P. B., Oche, D., Ede, O. F., Agwamba, E. C., Adeyinka, A. S. Metals (B, Ni) encapsulation of graphene/PEDOT hybrid materials for gas sensing applications: a computational study. Talanta Open 2023, 8, 100252; https://doi.org/10.1016/j.talo.2023.100252.Suche in Google Scholar

77. Bassey, V. M., Okon, E. E., Louis, H., Benjamin, I., Chukwuemeka, K., Gber, T. E., Ezekiel, M. C., Qader, S. W., Adeyinka, A. S. Nano-enhanced drug delivery of dacarbazine using heteroatoms (B, N, P, S) doped Ag-functionalized silicene nanomaterials: insight from density functional theory. Chem. Phys. Impact 2023, 7, 100297; https://doi.org/10.1016/j.chphi.2023.100297.Suche in Google Scholar

78. Asogwa, F. C., Louis, H., Gber, T. E., Isamura, B. K., Adalikwua, S. A. Electronic structure property and disposal efficiency of 2, 2-dichloropropionic acid using metalloid (B, Si, and Ge) decorated gallium nano-clusters (Ga12X12 (X = N, O)). J. Comput. Biophys. Chem. 2023, 1–15; https://doi.org/10.1142/s2737416523500515.Suche in Google Scholar

79. Zhao, G., Li, Z., Cheng, B., Zhuang, X., Lin, T. Hierarchical porous metal organic framework aerogel for highly efficient CO2 adsorption. Separ. Purif. Technol. 2023, 315, 123754; https://doi.org/10.1016/j.seppur.2023.123754.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0349).


Received: 2023-08-31
Accepted: 2023-10-25
Published Online: 2023-11-13
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0349/html
Button zum nach oben scrollen