Home Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection
Article
Licensed
Unlicensed Requires Authentication

Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection

  • Ghulam Nazik , Muhammad Aadil EMAIL logo , Sonia Zulfiqar , Warda Hassan , Abdur Rahman , Sobhy M. Ibrahim , Khalida Naseem , Tahir Ali Sheikh and Muhammad Nadeem Akhtar EMAIL logo
Published/Copyright: July 12, 2023

Abstract

This paper explores different techniques to combine and improve the electrochemical sensing activities of the transition metal chalcogenide. The transition metal chalcogenide was doped with a suitable dopant to tune the band structure. Surface-assisted nanotechnology was used to enrich the superficial properties of the doped material. Lastly, the nanostructured doped materials were physically mixed with the graphene nanoplates (GNPs) to improve the flow of charges and the stability of the electrochemistry. The most electrically conductive and common metal sulfides in nature were chosen and prepared using a cheap and easy wet-route method. Crystal structure, chemical functionality, texture, composition, and thermal stability of undoped, doped, and composite materials were determined using physicochemical techniques such as X-ray diffraction, FTIR, SEM, EDX, and TGA. N2-adsorption-desorption, current-voltage, and impedance studies show that the composite sample’s surface area, electrical conductivity, and charge transport properties are superior to those of the undoped and doped samples. Regarding electrochemical applications, the composite material supported a glassy carbon electrode (Co–Cu2S/Gr@GCE) with excellent Pb(II) ion sensing activity. Moreover, the sensitivity, detection, and quantification limits of the modified electrode for Pb(II) detection were computed to be 88.68 μAμMcm−2, 0.091 μM, and 0.30 μM, respectively. The key features developed in the metal sulfide for its enhancement of electrochemical sensing activity are a high surface area, good conductivity, and fast electron transport by adopting nanotechnology, metal doping, and composite formation methodologies. Based on the results of the experiments, we can say that using multiple inputs to integrate the feature we want is an excellent way to make electrochemical systems for the next generation.


Corresponding authors: Muhammad Aadil, Department of Chemistry, Rahim Yar Khan Campus, The Islamia University of Bahawalpur, Rahim Yar Khan, 64200, Pakistan, E-mail: ; and Muhammad Nadeem Akhtar, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, E-mail:

Acknowledgments

This work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia. The authors are thankful to the Institute of Chemistry, Baghdad-ul-Jadeed Campus, and Department of Chemistry, Rahim Yar Khan-Campus, The Islamia University of Bahawalpur, Bahawalpur and Higher Education Commission, Islamabad, Pakistan. Prof. Dr. Sonia Zulfiqar is highly thankful for the support provided by the Statutory City of Ostrava, Czechia through Research Grant “Global Experts”.

  1. Author contributions: Ghulam Nazik: Experimental work. Sonia Zulfiqar: Methodology, Formal analysis, Review and Editing. Warda Hassan: Writing- original draft. Abdur Rahman: Electrochemical investigations. Sobhy Ibrahim: Structural studies, formal analysis and reviewing. Khalida Naseem: Scietific correction and Conceptualization. Tahir Ali Sheikh: Proof reading, scientific analysis and editing. Muhammad Nadeem Akhtar: Designed the whole project/Supervised. Muhammad Aadil: Co-supervised the work.

  2. Research funding: This work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no competing interests.

  4. Consent for publication: All authors have read and approved this manuscript.

  5. Consent to participate: Not applicable.

  6. Ethical approval: Research does not involve Human Participants or/and Animals.

  7. Data availability: Data will be available on reasonable request.

References

1. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sensor. Actuator. B Chem. 2015, 213, 515–533; https://doi.org/10.1016/j.snb.2015.02.122.Search in Google Scholar

2. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K. N. Interdiscipl. Toxicol. 2014, 7, 60–72; https://doi.org/10.2478/intox-2014-0009.Search in Google Scholar PubMed PubMed Central

3. Khan, S. B., Rahman, M. M., Asiri, A. M., Marwani, H. M., Bawaked, S. M., Alamry, K. A. New J. Chem. 2013, 37, 2888–2893; https://doi.org/10.1039/c3nj00298e.Search in Google Scholar

4. Assaifan, A. K., Hezam, M., Al-Gawati, M. A., Alzahrani, K. E., Alswieleh, A., Arunachalam, P., Al-Mayouf, A., Alodhayb, A., Albrithen, H. Sens. Actuators, A 2021, 329, 112833; https://doi.org/10.1016/j.sna.2021.112833.Search in Google Scholar

5. Mohammed, A. S., Kapri, A., Goel, R. Heavy metal pollution: source, impact, and remedies. In Biomanagement of Metal-Contaminated Soils; Springer, 2011; pp. 1–28. https://citations.springernature.com/item?doi=10.1007/978-94-007-1914-9_1.10.1007/978-94-007-1914-9_1Search in Google Scholar

6. Rahman, M. M., Khan, S. B., Asiri, A. M., Marwani, H. M., Qusti, A. H. Compos. B Eng. 2013, 54, 215–223; https://doi.org/10.1016/j.compositesb.2013.05.018.Search in Google Scholar

7. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., Sadeghi, M. Front. Pharmacol. 2021, 12, 643972.10.3389/fphar.2021.643972Search in Google Scholar PubMed PubMed Central

8. Awual, M. R., Hasan, M. M., Iqbal, J., Islam, A., Islam, M. A., Asiri, A. M., Rahman, M. M. Microchem. J. 2020, 154, 104585; https://doi.org/10.1016/j.microc.2019.104585.Search in Google Scholar

9. Velusamy, S., Roy, A., Sundaram, S., Kumar Mallick, T. Chem. Rec. 2021, 21, 1570–1610; https://doi.org/10.1002/tcr.202000153.Search in Google Scholar PubMed

10. Hung, Y.-L., Hsiung, T.-M., Chen, Y.-Y., Huang, Y.-F., Huang, C.-C. J. Phys. Colloid Chem. 2010, 114, 16329–16334; https://doi.org/10.1021/jp1061573.Search in Google Scholar

11. Yang, Q., Chen, H., Hu, J., Huang, K., Hou, X. Anal. Chem. 2021, 94, 593–599; https://doi.org/10.1021/acs.analchem.1c03357.Search in Google Scholar PubMed

12. Bontidean, I., Berggren, C., Johansson, G., Csöregi, E., Mattiasson, B., Lloyd, J. R., Jakeman, K. J., Brown, N. L. Anal. Chem. 1998, 70, 4162–4169; https://doi.org/10.1021/ac9803636.Search in Google Scholar PubMed

13. Štenclová, P., Vyskočil, V., Szabó, O., Ižák, T., Potocký, Š., Kromka, A. Vacuum 2019, 170, 108953; https://doi.org/10.1016/j.vacuum.2019.108953.Search in Google Scholar

14. Lu, Y., Liang, X., Niyungeko, C., Zhou, J., Xu, J., Tian, G. Talanta 2018, 178, 324–338; https://doi.org/10.1016/j.talanta.2017.08.033.Search in Google Scholar PubMed

15. Liu, Y., Deng, Y., Dong, H., Liu, K., He, N. Sci. China Chem. 2017, 60, 329–337; https://doi.org/10.1007/s11426-016-0253-2.Search in Google Scholar

16. Chen, K., Wang, J., Kang, J., Lu, X., Zhao, X., Chu, K. Appl. Catal. B Environ. 2023, 324, 122241; https://doi.org/10.1016/j.apcatb.2022.122241.Search in Google Scholar

17. Tariq, R., Zulfiqar, S., Somaily, H. H., Warsi, M. F., Ayman, I., Wajid, F., Akhtar, M., Aadil, M. Surface. Interfac. 2022, 34, 102350; https://doi.org/10.1016/j.surfin.2022.102350.Search in Google Scholar

18. Alburaih, H., Aadil, M., Hassan, W., Amaral, L. S., Ejaz, S. R., Aman, S., Alsafari, I. A. Synth. Met. 2022, 287, 117093; https://doi.org/10.1016/j.synthmet.2022.117093.Search in Google Scholar

19. Rafiq, S., Aadil, M., Warsi, M. F., Yousaf, S., Alotaibi, M. T., El-Bahy, S. M., Shahid, M. Ceram. Int. 2022, 48, 14596–14605; https://doi.org/10.1016/j.ceramint.2022.01.353.Search in Google Scholar

20. Rahman, A., Aadil, M., Akhtar, M., Warsi, M. F., Jamil, A., Shakir, I., Shahid, M. Ceram. Int. 2020, 46, 13517–13526; https://doi.org/10.1016/j.ceramint.2020.02.136.Search in Google Scholar

21. Aadil, M., Zulfiqar, S., Sabeeh, H., Warsi, M. F., Shahid, M., Alsafari, I. A., Shakir, I. Ceram. Int. 2020, 46, 17836–17845; https://doi.org/10.1016/j.ceramint.2020.04.090.Search in Google Scholar

22. Chen, K., Zhang, G., Li, X., Zhao, X., Chu, K. Nano Res. 2022, 16, 5857–5863; https://doi.org/10.1007/s12274-023-5384-9.Search in Google Scholar

23. Chu, K., Li, Q.-Q., Cheng, Y.-H., Liu, Y.-P. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796; https://doi.org/10.1021/acsami.0c00860.Search in Google Scholar PubMed

24. Sabeeh, H., Aadil, M., Zulfiqar, S., Rasheed, A., Al-Khalli, N. F., Agboola, P. O., Haider, S., Warsi, M. F., Shakir, I. Ceram. Int. 2021, 47, 13613–13621; https://doi.org/10.1016/j.ceramint.2021.01.220.Search in Google Scholar

25. Sabeeh, H., Aadil, M., Zulfiqar, S., Ayeman, I., Shakir, I., Agboola, P. O., Haider, S., Warsi, M. F. J. Cluster Sci. 2021, 1–9.Search in Google Scholar

26. Ashraf, N., Aadil, M., Zulfiqar, S., Sabeeh, H., Khan, M. A., Shakir, I., Agboola, P. O., Warsi, M. F. ChemistrySelect 2020, 5, 8129–8136; https://doi.org/10.1002/slct.202001305.Search in Google Scholar

27. Aadil, M., Zulfiqar, S., Shahid, M., Agboola, P. O., Al-Khalli, N. F., Warsi, M. F., Shakir, I. Electrochim. Acta 2021, 383, 138332; https://doi.org/10.1016/j.electacta.2021.138332.Search in Google Scholar

28. Li, X., Chen, K., Lu, X., Ma, D., Chu, K. Chem. Eng. J. 2023, 454, 140333; https://doi.org/10.1016/j.cej.2022.140333.Search in Google Scholar

29. Aadil, M., Shaheen, W., Warsi, M. F., Shahid, M., Khan, M. A., Ali, Z., Haider, S., Shakir, I. J. Alloys Compd. 2016, 689, 648–654; https://doi.org/10.1016/j.jallcom.2016.08.029.Search in Google Scholar

30. Aadil, M., Zulfiqar, S., Agboola, P. O., Aboud, M. F. A., Shakir, I., Warsi, M. F. Synth. Met. 2021, 272, 116645; https://doi.org/10.1016/j.synthmet.2020.116645.Search in Google Scholar

31. Lee, S., Oh, J., Kim, D., Piao, Y. Talanta 2016, 160, 528–536; https://doi.org/10.1016/j.talanta.2016.07.034.Search in Google Scholar PubMed

32. Akhtar, M., Tahir, A., Zulfiqar, S., Hanif, F., Warsi, M. F., Agboola, P. O., Shakir, I. Synth. Met. 2020, 265, 116410; https://doi.org/10.1016/j.synthmet.2020.116410.Search in Google Scholar

33. Zhuang, Y., Zhao, M., He, Y., Cheng, F., Chen, S. J. Electroanal. Chem. 2018, 826, 90–95; https://doi.org/10.1016/j.jelechem.2018.08.016.Search in Google Scholar

34. Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., Rodthongkum, N. Synth. Met. 2018, 245, 251–259; https://doi.org/10.1016/j.synthmet.2018.09.012.Search in Google Scholar

35. Mousavi-Kamazani, M., Zarghami, Z., Salavati-Niasari, M. J. Phys. Colloid Chem. 2016, 120, 2096–2108; https://doi.org/10.1021/acs.jpcc.5b11566.Search in Google Scholar

36. Zhang, Y., Xing, C., Liu, Y., Spadaro, M. C., Wang, X., Li, M., Xiao, K., Zhang, T., Guardia, P., Lim, K. H., Moghaddam, A. O., Llorca, J., Arbiol, J., Ibáñez, M., Cabot, A. Nano Energy 2021, 85, 105991; https://doi.org/10.1016/j.nanoen.2021.105991.Search in Google Scholar

37. Aadil, M., Rahman, A., Zulfiqar, S., Alsafari, I. A., Shahid, M., Shakir, I., Agboola, P. O., Haider, S., Warsi, M. F. Adv. Powder Technol. 2021, 32, 940–950; https://doi.org/10.1016/j.apt.2021.01.040.Search in Google Scholar

38. Aadil, M., Nazik, G., Zulfiqar, S., Shakir, I., Aboud, M. F. A., Agboola, P. O., Haider, S., Warsi, M. F. Ceram. Int. 2021, 47, 9225–9233; https://doi.org/10.1016/j.ceramint.2020.12.048.Search in Google Scholar

39. Abdi, M., Mahdikhah, V., Sheibani, S. Opt. Mater. 2020, 102, 109803; https://doi.org/10.1016/j.optmat.2020.109803.Search in Google Scholar

40. Wang, S., Li, J., Fu, Y., Zhuang, Z., Liu, Z. Microchem. J. 2021, 166, 106251; https://doi.org/10.1016/j.microc.2021.106251.Search in Google Scholar

41. Bashir, S., Jamil, A., Khan, M. S., Alazmi, A., Abuilaiwi, F. A., Shahid, M. J. Alloys Compd. 2022, 913, 165214; https://doi.org/10.1016/j.jallcom.2022.165214.Search in Google Scholar

42. Bashir, S., Habib, A., Jamil, A., Alazmi, A., Shahid, M. Adv. Powder Technol. 2022, 33, 103482; https://doi.org/10.1016/j.apt.2022.103482.Search in Google Scholar

43. Alburaih, H. A., Aadil, M., Mubeen, S., Hassan, W., Rabia Ejaz, S., Anwar, A., Aman, S., Alsafari, I. A. FlatChem 2022, 34, 100380; https://doi.org/10.1016/j.flatc.2022.100380.Search in Google Scholar

44. Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M., Alamry, K. A., Rub, M. A., Khan, A., Khan, A. A. P., Qusti, A. H. J. Ind. Eng. Chem. 2014, 20, 1071–1078; https://doi.org/10.1016/j.jiec.2013.06.044.Search in Google Scholar

45. Mokhov, E. N. Doping of SiC Crystals During Sublimation Growth and Diffusion. IntechOpen: London, UK, 2018.Search in Google Scholar

46. Kousar, T., Aadil, M., Zulfiqar, S., Warsi, M. F., Ejaz, S. R., Elnaggar, A. Y., Fallatah, A. M., El-Bahy, S. M., Mahmood, F. Ceram. Int. 2022, 48, 11858–11868; https://doi.org/10.1016/j.ceramint.2022.01.057.Search in Google Scholar

47. Ahmad, I., Shah, S. M., Zafar, M. N., Ashiq, M. N., Tang, W., Jabeen, U. Ceram. Int. 2021, 47, 3760–3771; https://doi.org/10.1016/j.ceramint.2020.09.233.Search in Google Scholar

48. Aadil, M., Zulfiqar, S., Shahid, M., Agboola, P. O., Haider, S., Warsi, M. F., Shakir, I. J. Electroanal. Chem. 2021, 884, 115070; https://doi.org/10.1016/j.jelechem.2021.115070.Search in Google Scholar

49. Aadil, M., Hassan, W., Somaily, H. H., Ejaz, S. R., Abass, R. R., Jasem, H., Hachim, S. K., Adhab, A. H., Abood, E. S., Alsafari, I. A. J. Alloys Compd. 2022, 920, 165876; https://doi.org/10.1016/j.jallcom.2022.165876.Search in Google Scholar

50. Hemathangam, S., Thanapathy, G., Muthukumaran, S. J. Mater. Sci. Mater. Electron. 2016, 27, 2042–2048; https://doi.org/10.1007/s10854-015-3989-9.Search in Google Scholar

51. Pouvreau, M., Greathouse, J. A., Cygan, R. T., Kalinichev, A. G. J. Phys. Colloid Chem. 2019, 123, 11628–11638; https://doi.org/10.1021/acs.jpcc.9b00514.Search in Google Scholar

52. Shahid, M., Bashir, S., Afzal, A., Ibn Shamsah, S. M., Jamil, A. Ceram. Int. 2022, 48, 2566–2576; https://doi.org/10.1016/j.ceramint.2021.10.039.Search in Google Scholar

53. Jabeen, S., Aadil, M., Williams, J., Awan, M., Iqbal, J., Zulfiqar, S., Nazar, N. Ceram. Int. 2021, 47, 22345–22355; https://doi.org/10.1016/j.ceramint.2021.03.205.Search in Google Scholar

54. Shakir, I., Sarfraz, M., Ali, Z., Aboud, M. F. A., Agboola, P. O. J. Alloys Compd. 2016, 660, 450–455; https://doi.org/10.1016/j.jallcom.2015.11.055.Search in Google Scholar

55. Zafar, K., Aadil, M., Shahi, M. N., Sabeeh, H., Nazar, M. F., Iqbal, M., Yousuf, M. A. AAAFM Energy Mater. 2020, 01, 36–44.10.24911/AAAFM/Energy/23-1567670091Search in Google Scholar

56. Sabir, M., Ramzan, M., Imran, M., Ejaz, S. R., Anwar, A., Ahmad, S., Aamir, M., Aadil, M. Ceram. Int. 2022, 48, 9134–9145; https://doi.org/10.1016/j.ceramint.2021.12.098.Search in Google Scholar

57. Alazmi, A. Ceram. Int. 2022, 48, 17499–17509; https://doi.org/10.1016/j.ceramint.2022.03.014.Search in Google Scholar

58. Bashir, S., Jamil, A., Amin, R., Ul-hasan, I., Alazmi, A., Shahid, M. J. Solid State Chem. 2022, 312, 123217; https://doi.org/10.1016/j.jssc.2022.123217.Search in Google Scholar

59. Ambrosi, A., Chua, C. K., Bonanni, A., Pumera, M. Chem. Rev. 2014, 114, 7150–7188; https://doi.org/10.1021/cr500023c.Search in Google Scholar PubMed

60. Ali, A., Aadil, M., Rasheed, A., Hameed, I., Ajmal, S., Shakir, I., Warsi, M. F. Synth. Met. 2020, 265, 116408; https://doi.org/10.1016/j.synthmet.2020.116408.Search in Google Scholar

61. Herder, M., Eisenreich, F., Bonasera, A., Grafl, A., Grubert, L., Pätzel, M., Schwarz, J., Hecht, S. Chem. Eur J. 2017, 23, 3743–3754; https://doi.org/10.1002/chem.201605511.Search in Google Scholar PubMed

62. Khalid, M. U., Katubi, K. M., Zulfiqar, S., Alrowaili, Z. A., Aadil, M., Al-Buriahi, M. S., Shahid, M., Warsi, M. F. Fuel 2023, 343, 127946; https://doi.org/10.1016/j.fuel.2023.127946.Search in Google Scholar

63. Hu, J.-Y., Li, Z., Zhai, C.-Y., Wang, J.-F., Zeng, L.-X., Zhu, M.-S. Rare Met. 2021, 40, 1727–1737; https://doi.org/10.1007/s12598-020-01659-z.Search in Google Scholar

64. Sun, Y.-F., Sun, J.-H., Wang, J., Pi, Z.-X., Wang, L.-C., Yang, M., Huang, X.-J. Anal. Chim. Acta 2019, 1063, 64–74; https://doi.org/10.1016/j.aca.2019.03.008.Search in Google Scholar PubMed

65. Awual, M. R., Hasan, M. M., Islam, A., Rahman, M. M., Asiri, A. M., Khaleque, M. A., Sheikh, M. C. J. Clean. Prod. 2019, 231, 214–223; https://doi.org/10.1016/j.jclepro.2019.05.125.Search in Google Scholar

66. Kokab, T., Manzoor, A., Aftab, S., Aslam, F., Jan Iftikhar, F., Masood Siddiqi, H., Shah, A. Inorg. Chem. Commun. 2022, 138, 109261; https://doi.org/10.1016/j.inoche.2022.109261.Search in Google Scholar

67. Awual, M. R., Islam, A., Hasan, M. M., Rahman, M. M., Asiri, A. M., Khaleque, M. A., Chanmiya, M. Sheikh J. Clean. Prod. 2019, 224, 920–929; https://doi.org/10.1016/j.jclepro.2019.03.241.Search in Google Scholar

68. Khan, A. A. P., Khan, A., Rahman, M. M., Asiri, A. M., Oves, M. Int. J. Biol. Macromol. 2016, 89, 198–205; https://doi.org/10.1016/j.ijbiomac.2016.04.064.Search in Google Scholar PubMed

69. Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M. Microchim. Acta 2015, 182, 579–588; https://doi.org/10.1007/s00604-014-1361-z.Search in Google Scholar

70. Aqlan, F. M., Alam, M. M., Asiri, A. M., Zayed, M. E. M., Al-Eryani, D. A., Al-Zahrani, F. A. M., El-Shishtawy, R. M., Uddin, J., Rahman, M. M. J. Mol. Liq. 2019, 281, 401–406; https://doi.org/10.1016/j.molliq.2019.02.109.Search in Google Scholar

71. Rahman, M. M., Hussain, M. M., Arshad, M. N., Asiri, A. M. RSC Adv. 2020, 10, 5316–5327; https://doi.org/10.1039/c9ra09080k.Search in Google Scholar PubMed PubMed Central

72. Khan, A. A. P., Khan, A., Asiri, A. M., Alam, M. M., Rahman, M. M., Shaban, M. Int. J. Environ. Sci. Technol. 2019, 16, 8461–8470; https://doi.org/10.1007/s13762-019-02447-8.Search in Google Scholar

73. Wei, Y., Qian, T., Liu, J., Guo, X., Gong, Q., Liu, Z., Tian, B., Qiao, J. J. Materiomics 2019, 5, 252–257; https://doi.org/10.1016/j.jmat.2019.01.006.Search in Google Scholar

Received: 2023-05-05
Accepted: 2023-06-25
Published Online: 2023-07-12
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0252/html?lang=en
Scroll to top button