Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection
-
Ghulam Nazik
, Sonia Zulfiqar
Abstract
This paper explores different techniques to combine and improve the electrochemical sensing activities of the transition metal chalcogenide. The transition metal chalcogenide was doped with a suitable dopant to tune the band structure. Surface-assisted nanotechnology was used to enrich the superficial properties of the doped material. Lastly, the nanostructured doped materials were physically mixed with the graphene nanoplates (GNPs) to improve the flow of charges and the stability of the electrochemistry. The most electrically conductive and common metal sulfides in nature were chosen and prepared using a cheap and easy wet-route method. Crystal structure, chemical functionality, texture, composition, and thermal stability of undoped, doped, and composite materials were determined using physicochemical techniques such as X-ray diffraction, FTIR, SEM, EDX, and TGA. N2-adsorption-desorption, current-voltage, and impedance studies show that the composite sample’s surface area, electrical conductivity, and charge transport properties are superior to those of the undoped and doped samples. Regarding electrochemical applications, the composite material supported a glassy carbon electrode (Co–Cu2S/Gr@GCE) with excellent Pb(II) ion sensing activity. Moreover, the sensitivity, detection, and quantification limits of the modified electrode for Pb(II) detection were computed to be 88.68 μAμMcm−2, 0.091 μM, and 0.30 μM, respectively. The key features developed in the metal sulfide for its enhancement of electrochemical sensing activity are a high surface area, good conductivity, and fast electron transport by adopting nanotechnology, metal doping, and composite formation methodologies. Based on the results of the experiments, we can say that using multiple inputs to integrate the feature we want is an excellent way to make electrochemical systems for the next generation.
Acknowledgments
This work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia. The authors are thankful to the Institute of Chemistry, Baghdad-ul-Jadeed Campus, and Department of Chemistry, Rahim Yar Khan-Campus, The Islamia University of Bahawalpur, Bahawalpur and Higher Education Commission, Islamabad, Pakistan. Prof. Dr. Sonia Zulfiqar is highly thankful for the support provided by the Statutory City of Ostrava, Czechia through Research Grant “Global Experts”.
-
Author contributions: Ghulam Nazik: Experimental work. Sonia Zulfiqar: Methodology, Formal analysis, Review and Editing. Warda Hassan: Writing- original draft. Abdur Rahman: Electrochemical investigations. Sobhy Ibrahim: Structural studies, formal analysis and reviewing. Khalida Naseem: Scietific correction and Conceptualization. Tahir Ali Sheikh: Proof reading, scientific analysis and editing. Muhammad Nadeem Akhtar: Designed the whole project/Supervised. Muhammad Aadil: Co-supervised the work.
-
Research funding: This work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia.
-
Conflict of interest statement: The authors declare no competing interests.
-
Consent for publication: All authors have read and approved this manuscript.
-
Consent to participate: Not applicable.
-
Ethical approval: Research does not involve Human Participants or/and Animals.
-
Data availability: Data will be available on reasonable request.
References
1. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sensor. Actuator. B Chem. 2015, 213, 515–533; https://doi.org/10.1016/j.snb.2015.02.122.Search in Google Scholar
2. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K. N. Interdiscipl. Toxicol. 2014, 7, 60–72; https://doi.org/10.2478/intox-2014-0009.Search in Google Scholar PubMed PubMed Central
3. Khan, S. B., Rahman, M. M., Asiri, A. M., Marwani, H. M., Bawaked, S. M., Alamry, K. A. New J. Chem. 2013, 37, 2888–2893; https://doi.org/10.1039/c3nj00298e.Search in Google Scholar
4. Assaifan, A. K., Hezam, M., Al-Gawati, M. A., Alzahrani, K. E., Alswieleh, A., Arunachalam, P., Al-Mayouf, A., Alodhayb, A., Albrithen, H. Sens. Actuators, A 2021, 329, 112833; https://doi.org/10.1016/j.sna.2021.112833.Search in Google Scholar
5. Mohammed, A. S., Kapri, A., Goel, R. Heavy metal pollution: source, impact, and remedies. In Biomanagement of Metal-Contaminated Soils; Springer, 2011; pp. 1–28. https://citations.springernature.com/item?doi=10.1007/978-94-007-1914-9_1.10.1007/978-94-007-1914-9_1Search in Google Scholar
6. Rahman, M. M., Khan, S. B., Asiri, A. M., Marwani, H. M., Qusti, A. H. Compos. B Eng. 2013, 54, 215–223; https://doi.org/10.1016/j.compositesb.2013.05.018.Search in Google Scholar
7. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., Sadeghi, M. Front. Pharmacol. 2021, 12, 643972.10.3389/fphar.2021.643972Search in Google Scholar PubMed PubMed Central
8. Awual, M. R., Hasan, M. M., Iqbal, J., Islam, A., Islam, M. A., Asiri, A. M., Rahman, M. M. Microchem. J. 2020, 154, 104585; https://doi.org/10.1016/j.microc.2019.104585.Search in Google Scholar
9. Velusamy, S., Roy, A., Sundaram, S., Kumar Mallick, T. Chem. Rec. 2021, 21, 1570–1610; https://doi.org/10.1002/tcr.202000153.Search in Google Scholar PubMed
10. Hung, Y.-L., Hsiung, T.-M., Chen, Y.-Y., Huang, Y.-F., Huang, C.-C. J. Phys. Colloid Chem. 2010, 114, 16329–16334; https://doi.org/10.1021/jp1061573.Search in Google Scholar
11. Yang, Q., Chen, H., Hu, J., Huang, K., Hou, X. Anal. Chem. 2021, 94, 593–599; https://doi.org/10.1021/acs.analchem.1c03357.Search in Google Scholar PubMed
12. Bontidean, I., Berggren, C., Johansson, G., Csöregi, E., Mattiasson, B., Lloyd, J. R., Jakeman, K. J., Brown, N. L. Anal. Chem. 1998, 70, 4162–4169; https://doi.org/10.1021/ac9803636.Search in Google Scholar PubMed
13. Štenclová, P., Vyskočil, V., Szabó, O., Ižák, T., Potocký, Š., Kromka, A. Vacuum 2019, 170, 108953; https://doi.org/10.1016/j.vacuum.2019.108953.Search in Google Scholar
14. Lu, Y., Liang, X., Niyungeko, C., Zhou, J., Xu, J., Tian, G. Talanta 2018, 178, 324–338; https://doi.org/10.1016/j.talanta.2017.08.033.Search in Google Scholar PubMed
15. Liu, Y., Deng, Y., Dong, H., Liu, K., He, N. Sci. China Chem. 2017, 60, 329–337; https://doi.org/10.1007/s11426-016-0253-2.Search in Google Scholar
16. Chen, K., Wang, J., Kang, J., Lu, X., Zhao, X., Chu, K. Appl. Catal. B Environ. 2023, 324, 122241; https://doi.org/10.1016/j.apcatb.2022.122241.Search in Google Scholar
17. Tariq, R., Zulfiqar, S., Somaily, H. H., Warsi, M. F., Ayman, I., Wajid, F., Akhtar, M., Aadil, M. Surface. Interfac. 2022, 34, 102350; https://doi.org/10.1016/j.surfin.2022.102350.Search in Google Scholar
18. Alburaih, H., Aadil, M., Hassan, W., Amaral, L. S., Ejaz, S. R., Aman, S., Alsafari, I. A. Synth. Met. 2022, 287, 117093; https://doi.org/10.1016/j.synthmet.2022.117093.Search in Google Scholar
19. Rafiq, S., Aadil, M., Warsi, M. F., Yousaf, S., Alotaibi, M. T., El-Bahy, S. M., Shahid, M. Ceram. Int. 2022, 48, 14596–14605; https://doi.org/10.1016/j.ceramint.2022.01.353.Search in Google Scholar
20. Rahman, A., Aadil, M., Akhtar, M., Warsi, M. F., Jamil, A., Shakir, I., Shahid, M. Ceram. Int. 2020, 46, 13517–13526; https://doi.org/10.1016/j.ceramint.2020.02.136.Search in Google Scholar
21. Aadil, M., Zulfiqar, S., Sabeeh, H., Warsi, M. F., Shahid, M., Alsafari, I. A., Shakir, I. Ceram. Int. 2020, 46, 17836–17845; https://doi.org/10.1016/j.ceramint.2020.04.090.Search in Google Scholar
22. Chen, K., Zhang, G., Li, X., Zhao, X., Chu, K. Nano Res. 2022, 16, 5857–5863; https://doi.org/10.1007/s12274-023-5384-9.Search in Google Scholar
23. Chu, K., Li, Q.-Q., Cheng, Y.-H., Liu, Y.-P. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796; https://doi.org/10.1021/acsami.0c00860.Search in Google Scholar PubMed
24. Sabeeh, H., Aadil, M., Zulfiqar, S., Rasheed, A., Al-Khalli, N. F., Agboola, P. O., Haider, S., Warsi, M. F., Shakir, I. Ceram. Int. 2021, 47, 13613–13621; https://doi.org/10.1016/j.ceramint.2021.01.220.Search in Google Scholar
25. Sabeeh, H., Aadil, M., Zulfiqar, S., Ayeman, I., Shakir, I., Agboola, P. O., Haider, S., Warsi, M. F. J. Cluster Sci. 2021, 1–9.Search in Google Scholar
26. Ashraf, N., Aadil, M., Zulfiqar, S., Sabeeh, H., Khan, M. A., Shakir, I., Agboola, P. O., Warsi, M. F. ChemistrySelect 2020, 5, 8129–8136; https://doi.org/10.1002/slct.202001305.Search in Google Scholar
27. Aadil, M., Zulfiqar, S., Shahid, M., Agboola, P. O., Al-Khalli, N. F., Warsi, M. F., Shakir, I. Electrochim. Acta 2021, 383, 138332; https://doi.org/10.1016/j.electacta.2021.138332.Search in Google Scholar
28. Li, X., Chen, K., Lu, X., Ma, D., Chu, K. Chem. Eng. J. 2023, 454, 140333; https://doi.org/10.1016/j.cej.2022.140333.Search in Google Scholar
29. Aadil, M., Shaheen, W., Warsi, M. F., Shahid, M., Khan, M. A., Ali, Z., Haider, S., Shakir, I. J. Alloys Compd. 2016, 689, 648–654; https://doi.org/10.1016/j.jallcom.2016.08.029.Search in Google Scholar
30. Aadil, M., Zulfiqar, S., Agboola, P. O., Aboud, M. F. A., Shakir, I., Warsi, M. F. Synth. Met. 2021, 272, 116645; https://doi.org/10.1016/j.synthmet.2020.116645.Search in Google Scholar
31. Lee, S., Oh, J., Kim, D., Piao, Y. Talanta 2016, 160, 528–536; https://doi.org/10.1016/j.talanta.2016.07.034.Search in Google Scholar PubMed
32. Akhtar, M., Tahir, A., Zulfiqar, S., Hanif, F., Warsi, M. F., Agboola, P. O., Shakir, I. Synth. Met. 2020, 265, 116410; https://doi.org/10.1016/j.synthmet.2020.116410.Search in Google Scholar
33. Zhuang, Y., Zhao, M., He, Y., Cheng, F., Chen, S. J. Electroanal. Chem. 2018, 826, 90–95; https://doi.org/10.1016/j.jelechem.2018.08.016.Search in Google Scholar
34. Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., Rodthongkum, N. Synth. Met. 2018, 245, 251–259; https://doi.org/10.1016/j.synthmet.2018.09.012.Search in Google Scholar
35. Mousavi-Kamazani, M., Zarghami, Z., Salavati-Niasari, M. J. Phys. Colloid Chem. 2016, 120, 2096–2108; https://doi.org/10.1021/acs.jpcc.5b11566.Search in Google Scholar
36. Zhang, Y., Xing, C., Liu, Y., Spadaro, M. C., Wang, X., Li, M., Xiao, K., Zhang, T., Guardia, P., Lim, K. H., Moghaddam, A. O., Llorca, J., Arbiol, J., Ibáñez, M., Cabot, A. Nano Energy 2021, 85, 105991; https://doi.org/10.1016/j.nanoen.2021.105991.Search in Google Scholar
37. Aadil, M., Rahman, A., Zulfiqar, S., Alsafari, I. A., Shahid, M., Shakir, I., Agboola, P. O., Haider, S., Warsi, M. F. Adv. Powder Technol. 2021, 32, 940–950; https://doi.org/10.1016/j.apt.2021.01.040.Search in Google Scholar
38. Aadil, M., Nazik, G., Zulfiqar, S., Shakir, I., Aboud, M. F. A., Agboola, P. O., Haider, S., Warsi, M. F. Ceram. Int. 2021, 47, 9225–9233; https://doi.org/10.1016/j.ceramint.2020.12.048.Search in Google Scholar
39. Abdi, M., Mahdikhah, V., Sheibani, S. Opt. Mater. 2020, 102, 109803; https://doi.org/10.1016/j.optmat.2020.109803.Search in Google Scholar
40. Wang, S., Li, J., Fu, Y., Zhuang, Z., Liu, Z. Microchem. J. 2021, 166, 106251; https://doi.org/10.1016/j.microc.2021.106251.Search in Google Scholar
41. Bashir, S., Jamil, A., Khan, M. S., Alazmi, A., Abuilaiwi, F. A., Shahid, M. J. Alloys Compd. 2022, 913, 165214; https://doi.org/10.1016/j.jallcom.2022.165214.Search in Google Scholar
42. Bashir, S., Habib, A., Jamil, A., Alazmi, A., Shahid, M. Adv. Powder Technol. 2022, 33, 103482; https://doi.org/10.1016/j.apt.2022.103482.Search in Google Scholar
43. Alburaih, H. A., Aadil, M., Mubeen, S., Hassan, W., Rabia Ejaz, S., Anwar, A., Aman, S., Alsafari, I. A. FlatChem 2022, 34, 100380; https://doi.org/10.1016/j.flatc.2022.100380.Search in Google Scholar
44. Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M., Alamry, K. A., Rub, M. A., Khan, A., Khan, A. A. P., Qusti, A. H. J. Ind. Eng. Chem. 2014, 20, 1071–1078; https://doi.org/10.1016/j.jiec.2013.06.044.Search in Google Scholar
45. Mokhov, E. N. Doping of SiC Crystals During Sublimation Growth and Diffusion. IntechOpen: London, UK, 2018.Search in Google Scholar
46. Kousar, T., Aadil, M., Zulfiqar, S., Warsi, M. F., Ejaz, S. R., Elnaggar, A. Y., Fallatah, A. M., El-Bahy, S. M., Mahmood, F. Ceram. Int. 2022, 48, 11858–11868; https://doi.org/10.1016/j.ceramint.2022.01.057.Search in Google Scholar
47. Ahmad, I., Shah, S. M., Zafar, M. N., Ashiq, M. N., Tang, W., Jabeen, U. Ceram. Int. 2021, 47, 3760–3771; https://doi.org/10.1016/j.ceramint.2020.09.233.Search in Google Scholar
48. Aadil, M., Zulfiqar, S., Shahid, M., Agboola, P. O., Haider, S., Warsi, M. F., Shakir, I. J. Electroanal. Chem. 2021, 884, 115070; https://doi.org/10.1016/j.jelechem.2021.115070.Search in Google Scholar
49. Aadil, M., Hassan, W., Somaily, H. H., Ejaz, S. R., Abass, R. R., Jasem, H., Hachim, S. K., Adhab, A. H., Abood, E. S., Alsafari, I. A. J. Alloys Compd. 2022, 920, 165876; https://doi.org/10.1016/j.jallcom.2022.165876.Search in Google Scholar
50. Hemathangam, S., Thanapathy, G., Muthukumaran, S. J. Mater. Sci. Mater. Electron. 2016, 27, 2042–2048; https://doi.org/10.1007/s10854-015-3989-9.Search in Google Scholar
51. Pouvreau, M., Greathouse, J. A., Cygan, R. T., Kalinichev, A. G. J. Phys. Colloid Chem. 2019, 123, 11628–11638; https://doi.org/10.1021/acs.jpcc.9b00514.Search in Google Scholar
52. Shahid, M., Bashir, S., Afzal, A., Ibn Shamsah, S. M., Jamil, A. Ceram. Int. 2022, 48, 2566–2576; https://doi.org/10.1016/j.ceramint.2021.10.039.Search in Google Scholar
53. Jabeen, S., Aadil, M., Williams, J., Awan, M., Iqbal, J., Zulfiqar, S., Nazar, N. Ceram. Int. 2021, 47, 22345–22355; https://doi.org/10.1016/j.ceramint.2021.03.205.Search in Google Scholar
54. Shakir, I., Sarfraz, M., Ali, Z., Aboud, M. F. A., Agboola, P. O. J. Alloys Compd. 2016, 660, 450–455; https://doi.org/10.1016/j.jallcom.2015.11.055.Search in Google Scholar
55. Zafar, K., Aadil, M., Shahi, M. N., Sabeeh, H., Nazar, M. F., Iqbal, M., Yousuf, M. A. AAAFM Energy Mater. 2020, 01, 36–44.10.24911/AAAFM/Energy/23-1567670091Search in Google Scholar
56. Sabir, M., Ramzan, M., Imran, M., Ejaz, S. R., Anwar, A., Ahmad, S., Aamir, M., Aadil, M. Ceram. Int. 2022, 48, 9134–9145; https://doi.org/10.1016/j.ceramint.2021.12.098.Search in Google Scholar
57. Alazmi, A. Ceram. Int. 2022, 48, 17499–17509; https://doi.org/10.1016/j.ceramint.2022.03.014.Search in Google Scholar
58. Bashir, S., Jamil, A., Amin, R., Ul-hasan, I., Alazmi, A., Shahid, M. J. Solid State Chem. 2022, 312, 123217; https://doi.org/10.1016/j.jssc.2022.123217.Search in Google Scholar
59. Ambrosi, A., Chua, C. K., Bonanni, A., Pumera, M. Chem. Rev. 2014, 114, 7150–7188; https://doi.org/10.1021/cr500023c.Search in Google Scholar PubMed
60. Ali, A., Aadil, M., Rasheed, A., Hameed, I., Ajmal, S., Shakir, I., Warsi, M. F. Synth. Met. 2020, 265, 116408; https://doi.org/10.1016/j.synthmet.2020.116408.Search in Google Scholar
61. Herder, M., Eisenreich, F., Bonasera, A., Grafl, A., Grubert, L., Pätzel, M., Schwarz, J., Hecht, S. Chem. Eur J. 2017, 23, 3743–3754; https://doi.org/10.1002/chem.201605511.Search in Google Scholar PubMed
62. Khalid, M. U., Katubi, K. M., Zulfiqar, S., Alrowaili, Z. A., Aadil, M., Al-Buriahi, M. S., Shahid, M., Warsi, M. F. Fuel 2023, 343, 127946; https://doi.org/10.1016/j.fuel.2023.127946.Search in Google Scholar
63. Hu, J.-Y., Li, Z., Zhai, C.-Y., Wang, J.-F., Zeng, L.-X., Zhu, M.-S. Rare Met. 2021, 40, 1727–1737; https://doi.org/10.1007/s12598-020-01659-z.Search in Google Scholar
64. Sun, Y.-F., Sun, J.-H., Wang, J., Pi, Z.-X., Wang, L.-C., Yang, M., Huang, X.-J. Anal. Chim. Acta 2019, 1063, 64–74; https://doi.org/10.1016/j.aca.2019.03.008.Search in Google Scholar PubMed
65. Awual, M. R., Hasan, M. M., Islam, A., Rahman, M. M., Asiri, A. M., Khaleque, M. A., Sheikh, M. C. J. Clean. Prod. 2019, 231, 214–223; https://doi.org/10.1016/j.jclepro.2019.05.125.Search in Google Scholar
66. Kokab, T., Manzoor, A., Aftab, S., Aslam, F., Jan Iftikhar, F., Masood Siddiqi, H., Shah, A. Inorg. Chem. Commun. 2022, 138, 109261; https://doi.org/10.1016/j.inoche.2022.109261.Search in Google Scholar
67. Awual, M. R., Islam, A., Hasan, M. M., Rahman, M. M., Asiri, A. M., Khaleque, M. A., Chanmiya, M. Sheikh J. Clean. Prod. 2019, 224, 920–929; https://doi.org/10.1016/j.jclepro.2019.03.241.Search in Google Scholar
68. Khan, A. A. P., Khan, A., Rahman, M. M., Asiri, A. M., Oves, M. Int. J. Biol. Macromol. 2016, 89, 198–205; https://doi.org/10.1016/j.ijbiomac.2016.04.064.Search in Google Scholar PubMed
69. Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M. Microchim. Acta 2015, 182, 579–588; https://doi.org/10.1007/s00604-014-1361-z.Search in Google Scholar
70. Aqlan, F. M., Alam, M. M., Asiri, A. M., Zayed, M. E. M., Al-Eryani, D. A., Al-Zahrani, F. A. M., El-Shishtawy, R. M., Uddin, J., Rahman, M. M. J. Mol. Liq. 2019, 281, 401–406; https://doi.org/10.1016/j.molliq.2019.02.109.Search in Google Scholar
71. Rahman, M. M., Hussain, M. M., Arshad, M. N., Asiri, A. M. RSC Adv. 2020, 10, 5316–5327; https://doi.org/10.1039/c9ra09080k.Search in Google Scholar PubMed PubMed Central
72. Khan, A. A. P., Khan, A., Asiri, A. M., Alam, M. M., Rahman, M. M., Shaban, M. Int. J. Environ. Sci. Technol. 2019, 16, 8461–8470; https://doi.org/10.1007/s13762-019-02447-8.Search in Google Scholar
73. Wei, Y., Qian, T., Liu, J., Guo, X., Gong, Q., Liu, Z., Tian, B., Qiao, J. J. Materiomics 2019, 5, 252–257; https://doi.org/10.1016/j.jmat.2019.01.006.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection
Articles in the same Issue
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection