Startseite One step biogenic sugarcane bagasse mediated synthesis of gold nanoparticles and their catalytic applications in removing environmental pollutants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

One step biogenic sugarcane bagasse mediated synthesis of gold nanoparticles and their catalytic applications in removing environmental pollutants

  • Muqaddas Naeem , Ahmad Irfan , Robina Begum EMAIL logo und Zahoor H. Farooqi EMAIL logo
Veröffentlicht/Copyright: 24. Mai 2023

Abstract

Biogenic green synthesis of gold nanoparticles (Au-NPs) was carried out by utilizing fated waste product of sugarcane industry. Sugarcane bagasse extract was obtained by constant stirring of sugarcane bagasse in aqueous medium for 20 min. Synthesis of gold nanoparticles was carried out at different values of pH of the medium in order to determine the effect of pH on the formation of gold nanoparticles. Fabrication of gold nanoparticles was confirmed by UV–Vis spectroscopic analysis of the reaction mixture and XRD analysis of the sample. FTIR was used to identify different functionalities present in extract responsible for the formation of gold nanoparticles. Biogenic Au-NPs were utilized as a catalyst for the reduction/degradation of nitroarenes and organic dyes such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), Congo red (CR), methyl red (MR), brilliant blue (BB), rhodamine B (Rh B) and methyl orange (MO). Kinetics of these reactions proves the efficiency and effectiveness of sugarcane bagasse mediated gold nano-catalysts making them an excellent tool for industrial applications.


Corresponding authors: Robina Begum and Zahoor H. Farooqi, School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan, E-mail: ,

Funding source: University of the Punjab, Lahore, Pakistan

Award Identifier / Grant number: D/695/ORIC

  1. Research funding: R. Begum and Z. H. Farooqi are thankful to University of the Punjab, Lahore, Pakistan for research grant for fiscal year 2022–2023 (Ref. No.D/695/ORIC dated 23-12-2022). A. Irfan is grateful to King Khalid University, Saudi Arabia for research grant (RGP1/36/43).

  2. Conflict of interest statement: There is no conflict of interest.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. Begum, R., Rehan, R., Farooqi, Z. H., Butt, Z., Ashraf, S. J. Nanopart. Res. 2016, 18, 231; https://doi.org/10.1007/s11051-016-3536-5.Suche in Google Scholar

2. Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M., Kumar, S. T., Rao, M. J. bioremediat. biodegrad. 2015, 6, 312.10.1007/s13204-015-0473-zSuche in Google Scholar

3. Arif, M., Shahid, M., Irfan, A., Nisar, J., Wu, W., Farooqi, Z. H., Begum, R. RSC Adv. 2022, 12, 5105; https://doi.org/10.1039/d1ra09380k.Suche in Google Scholar PubMed PubMed Central

4. Vidhu, V., Philip, D. Micron 2014, 56, 54; https://doi.org/10.1016/j.micron.2013.10.006.Suche in Google Scholar PubMed

5. Umamaheswari, C., Lakshmanan, A., Nagarajan, N. J. Photochem. Photobiol. B, Biol. 2018, 178, 33; https://doi.org/10.1016/j.jphotobiol.2017.10.017.Suche in Google Scholar PubMed

6. Devatha, C., Thalla, A. K., Katte, S. Y. J. Cleaner Prod. 2016, 139, 1425; https://doi.org/10.1016/j.jclepro.2016.09.019.Suche in Google Scholar

7. Farooqi, Z. H., Iqbal, S., Khan, S. R., Kanwal, F., Begum, R. e-Polym. 2014, 14, 313; https://doi.org/10.1515/epoly-2014-0111.Suche in Google Scholar

8. Begum, R., Farooqi, Z. H., Ahmed, E., Naseem, K., Ashraf, S., Sharif, A., Rehan, R. Appl. Organomet. Chem. 2017, 31, e3563; https://doi.org/10.1002/aoc.3563.Suche in Google Scholar

9. Farooqi, Z. H., Sakhawat, T., Khan, S. R., Kanwal, F., Usman, M., Begum, R. Mater. Sci.–Poland 2015, 33, 185; https://doi.org/10.1515/msp-2015-0025.Suche in Google Scholar

10. Shen, W., Qu, Y., Pei, X., Li, S., You, S., Wang, J., Zhang, Z., Zhou, J. J. Hazard. Mater. 2017, 321, 299; https://doi.org/10.1016/j.jhazmat.2016.07.051.Suche in Google Scholar PubMed

11. Moreau, F., Bond, G. C., Taylor, A. O. J. Catal. 2005, 231, 105; https://doi.org/10.1016/j.jcat.2005.01.030.Suche in Google Scholar

12. Ho, K., Yeung, K. J. Catal. 2006, 242, 131; https://doi.org/10.1016/j.jcat.2006.06.005.Suche in Google Scholar

13. Pasquato, L., Rancan, F., Scrimin, P., Mancin, F., Frigeri, C. Chem. Commun. 2000, 22, 2253; https://doi.org/10.1039/b005244m.Suche in Google Scholar

14. Song, K. C., Lee, S. M., Park, T. S., Lee, B. S. Korean J. Chem. Eng. 2009, 26, 153; https://doi.org/10.1007/s11814-009-0024-y.Suche in Google Scholar

15. Guzmán, M. G., Dille, J., Godet, S. Int. J. Chem. Biomol. Eng 2009, 2, 104.Suche in Google Scholar

16. Chirea, M., Freitas, A., Vasile, B. S., Ghitulica, C., Pereira, C. M., Silva, F. Langmuir 2011, 27, 3906; https://doi.org/10.1021/la104092b.Suche in Google Scholar PubMed

17. Jadoun, S., Chauhan, N. P. S., Zarrintaj, P., Barani, M., Varma, R. S., Chinnam, S., Rahdar, A. Environ. Chem. Lett. 2022, 20, 3153; https://doi.org/10.1007/s10311-022-01444-7.Suche in Google Scholar

18. Khan, T., Ullah, N., Khan, M. A., Nadhman, A. Adv. Colloid Interface Sci. 2019, 272, 102017; https://doi.org/10.1016/j.cis.2019.102017.Suche in Google Scholar PubMed

19. Reddy, V., Torati, R. S., Oh, S., Kim, C. Ind. Eng. Chem. Res. 2013, 52, 556; https://doi.org/10.1021/ie302037c.Suche in Google Scholar

20. Narayanan, K. B., Sakthivel, N. Mater. Lett. 2008, 62, 4588; https://doi.org/10.1016/j.matlet.2008.08.044.Suche in Google Scholar

21. Ghodake, G., Deshpande, N., Lee, Y., Jin, E. Colloids Surf., B 2010, 75, 584; https://doi.org/10.1016/j.colsurfb.2009.09.040.Suche in Google Scholar PubMed

22. Philip, D. Spectrochim. Acta, Part A 2009, 73, 650; https://doi.org/10.1016/j.saa.2009.03.007.Suche in Google Scholar PubMed

23. Philip, D. Phys. E 2010, 42, 1417; https://doi.org/10.1016/j.physe.2009.11.081.Suche in Google Scholar

24. Smitha, S., Philip, D., Gopchandran, K. Spectrochim. Acta, Part A 2009, 74, 735; https://doi.org/10.1016/j.saa.2009.08.007.Suche in Google Scholar PubMed

25. Aromal, S. A., Philip, D. Spectrochim. Acta, Part A 2012, 97, 1.10.1016/j.saa.2012.05.083Suche in Google Scholar PubMed

26. Kumar, K. P., Paul, W., Sharma, C. P. Process Biochem. 2011, 46, 2007; https://doi.org/10.1016/j.procbio.2011.07.011.Suche in Google Scholar

27. Engelbrekt, C., SØrensen, K. H., Zhang, J., Welinder, A. C., Jensen, P. S., Ulstrup, J. J. Mater. Chem. 2009, 19, 7839; https://doi.org/10.1039/b911111e.Suche in Google Scholar

28. Krishnaswamy, K., Vali, H., Orsat, V. J. Food Eng. 2014, 142, 210; https://doi.org/10.1016/j.jfoodeng.2014.06.014.Suche in Google Scholar

29. Noruzi, M., Zare, D., Khoshnevisan, K., Davoodi, D. Spectrochim. Acta, Part A 2011, 79, 1461; https://doi.org/10.1016/j.saa.2011.05.001.Suche in Google Scholar PubMed

30. Jayaseelan, C., Ramkumar, R., Rahuman, A. A., Perumal, P. Ind. Crops Prod. 2013, 45, 423; https://doi.org/10.1016/j.indcrop.2012.12.019.Suche in Google Scholar

31. Nadaf, N. Y., Kanase, S. S. Arabian J. Chem. 2019, 12, 4806; https://doi.org/10.1016/j.arabjc.2016.09.020.Suche in Google Scholar

32. Naseem, K., Farooqi, Z. H., Begum, R., Wu, W., Irfan, A., Ajmal, M. Colloids Surf., A 2020, 594, 124646; https://doi.org/10.1016/j.colsurfa.2020.124646.Suche in Google Scholar

33. Shahid, M., Farooqi, Z. H., Begum, R., Arif, M., Wu, W., Irfan, A. Crit. Rev. Anal. Chem. 2020, 50, 513; https://doi.org/10.1080/10408347.2019.1663148.Suche in Google Scholar PubMed

34. Kumar, I., Mondal, M., Meyappan, V., Sakthivel, N. Mater. Res. Bull. 2019, 117, 18; https://doi.org/10.1016/j.materresbull.2019.04.029.Suche in Google Scholar

35. Baruah, D., Goswami, M., Yadav, R. N. S., Yadav, A., Das, A. M. J. Photochem. Photobiol. B, Biol. 2018, 186, 51; https://doi.org/10.1016/j.jphotobiol.2018.07.002.Suche in Google Scholar PubMed

36. Shen, Z., Han, G., Liu, C., Wang, X., Sun, R. J. Alloys Compd. 2016, 686, 82; https://doi.org/10.1016/j.jallcom.2016.05.348.Suche in Google Scholar

37. Aguilar, N. M., Arteaga-Cardona, F., Estévez, J., Silva-González, N., Benítez-Serrano, J., Salazar-Kuri, U. J. Environ. Chem. Eng. 2018, 6, 6275; https://doi.org/10.1016/j.jece.2018.09.056.Suche in Google Scholar

38. Feng, N., Ren, L., Wu, H., Wu, Q., Xie, Y. Carbohydr. Polym. 2019, 224, 115130; https://doi.org/10.1016/j.carbpol.2019.115130.Suche in Google Scholar PubMed

39. Yu, Y., Naik, S. S., Oh, Y., Theerthagiri, J., Lee, S. J., Choi, M. Y. J. Hazard. Mater. 2021, 420, 126585; https://doi.org/10.1016/j.jhazmat.2021.126585.Suche in Google Scholar PubMed

40. Zhang, K., Shen, M., Liu, H., Shang, S., Wang, D., Liimatainen, H. Carbohydr. Polym. 2018, 186, 132; https://doi.org/10.1016/j.carbpol.2018.01.048.Suche in Google Scholar PubMed

41. Lin, X., Wang, J., Han, X., Wu, M., Kuga, S., Huang, Y. J. Bioresour. Bioprod. 2017, 2, 149.Suche in Google Scholar

42. Abdelwahab, N., Shukry, N. Carbohydr. Polym. 2015, 115, 276; https://doi.org/10.1016/j.carbpol.2014.08.052.Suche in Google Scholar PubMed

43. Kumar, H., Gehlaut, A. K., Gaur, A., Park, J.-W., Maken, S. J. Nanosci. Nanotechnol. 2020, 20, 6413; https://doi.org/10.1166/jnn.2020.18509.Suche in Google Scholar PubMed

44. Naseem, K., Farooqi, Z. H., Begum, R., Irfan, A. J. Cleaner Prod. 2018, 187, 296; https://doi.org/10.1016/j.jclepro.2018.03.209.Suche in Google Scholar

45. Anchan, S., Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., Selvaraj, R. Biocatal. Agric. Biotechnol. 2019, 20, 101251; https://doi.org/10.1016/j.bcab.2019.101251.Suche in Google Scholar

46. Xiong, Y., Huang, L., Mahmud, S., Yang, F., Liu, H. Chin. J. Chem. Eng. 2020, 28, 1334; https://doi.org/10.1016/j.cjche.2020.02.014.Suche in Google Scholar

Received: 2022-09-05
Accepted: 2023-05-08
Published Online: 2023-05-24
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0125/html
Button zum nach oben scrollen