One step biogenic sugarcane bagasse mediated synthesis of gold nanoparticles and their catalytic applications in removing environmental pollutants
Abstract
Biogenic green synthesis of gold nanoparticles (Au-NPs) was carried out by utilizing fated waste product of sugarcane industry. Sugarcane bagasse extract was obtained by constant stirring of sugarcane bagasse in aqueous medium for 20 min. Synthesis of gold nanoparticles was carried out at different values of pH of the medium in order to determine the effect of pH on the formation of gold nanoparticles. Fabrication of gold nanoparticles was confirmed by UV–Vis spectroscopic analysis of the reaction mixture and XRD analysis of the sample. FTIR was used to identify different functionalities present in extract responsible for the formation of gold nanoparticles. Biogenic Au-NPs were utilized as a catalyst for the reduction/degradation of nitroarenes and organic dyes such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), Congo red (CR), methyl red (MR), brilliant blue (BB), rhodamine B (Rh B) and methyl orange (MO). Kinetics of these reactions proves the efficiency and effectiveness of sugarcane bagasse mediated gold nano-catalysts making them an excellent tool for industrial applications.
Funding source: University of the Punjab, Lahore, Pakistan
Award Identifier / Grant number: D/695/ORIC
-
Research funding: R. Begum and Z. H. Farooqi are thankful to University of the Punjab, Lahore, Pakistan for research grant for fiscal year 2022–2023 (Ref. No.D/695/ORIC dated 23-12-2022). A. Irfan is grateful to King Khalid University, Saudi Arabia for research grant (RGP1/36/43).
-
Conflict of interest statement: There is no conflict of interest.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
References
1. Begum, R., Rehan, R., Farooqi, Z. H., Butt, Z., Ashraf, S. J. Nanopart. Res. 2016, 18, 231; https://doi.org/10.1007/s11051-016-3536-5.Suche in Google Scholar
2. Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M., Kumar, S. T., Rao, M. J. bioremediat. biodegrad. 2015, 6, 312.10.1007/s13204-015-0473-zSuche in Google Scholar
3. Arif, M., Shahid, M., Irfan, A., Nisar, J., Wu, W., Farooqi, Z. H., Begum, R. RSC Adv. 2022, 12, 5105; https://doi.org/10.1039/d1ra09380k.Suche in Google Scholar PubMed PubMed Central
4. Vidhu, V., Philip, D. Micron 2014, 56, 54; https://doi.org/10.1016/j.micron.2013.10.006.Suche in Google Scholar PubMed
5. Umamaheswari, C., Lakshmanan, A., Nagarajan, N. J. Photochem. Photobiol. B, Biol. 2018, 178, 33; https://doi.org/10.1016/j.jphotobiol.2017.10.017.Suche in Google Scholar PubMed
6. Devatha, C., Thalla, A. K., Katte, S. Y. J. Cleaner Prod. 2016, 139, 1425; https://doi.org/10.1016/j.jclepro.2016.09.019.Suche in Google Scholar
7. Farooqi, Z. H., Iqbal, S., Khan, S. R., Kanwal, F., Begum, R. e-Polym. 2014, 14, 313; https://doi.org/10.1515/epoly-2014-0111.Suche in Google Scholar
8. Begum, R., Farooqi, Z. H., Ahmed, E., Naseem, K., Ashraf, S., Sharif, A., Rehan, R. Appl. Organomet. Chem. 2017, 31, e3563; https://doi.org/10.1002/aoc.3563.Suche in Google Scholar
9. Farooqi, Z. H., Sakhawat, T., Khan, S. R., Kanwal, F., Usman, M., Begum, R. Mater. Sci.–Poland 2015, 33, 185; https://doi.org/10.1515/msp-2015-0025.Suche in Google Scholar
10. Shen, W., Qu, Y., Pei, X., Li, S., You, S., Wang, J., Zhang, Z., Zhou, J. J. Hazard. Mater. 2017, 321, 299; https://doi.org/10.1016/j.jhazmat.2016.07.051.Suche in Google Scholar PubMed
11. Moreau, F., Bond, G. C., Taylor, A. O. J. Catal. 2005, 231, 105; https://doi.org/10.1016/j.jcat.2005.01.030.Suche in Google Scholar
12. Ho, K., Yeung, K. J. Catal. 2006, 242, 131; https://doi.org/10.1016/j.jcat.2006.06.005.Suche in Google Scholar
13. Pasquato, L., Rancan, F., Scrimin, P., Mancin, F., Frigeri, C. Chem. Commun. 2000, 22, 2253; https://doi.org/10.1039/b005244m.Suche in Google Scholar
14. Song, K. C., Lee, S. M., Park, T. S., Lee, B. S. Korean J. Chem. Eng. 2009, 26, 153; https://doi.org/10.1007/s11814-009-0024-y.Suche in Google Scholar
15. Guzmán, M. G., Dille, J., Godet, S. Int. J. Chem. Biomol. Eng 2009, 2, 104.Suche in Google Scholar
16. Chirea, M., Freitas, A., Vasile, B. S., Ghitulica, C., Pereira, C. M., Silva, F. Langmuir 2011, 27, 3906; https://doi.org/10.1021/la104092b.Suche in Google Scholar PubMed
17. Jadoun, S., Chauhan, N. P. S., Zarrintaj, P., Barani, M., Varma, R. S., Chinnam, S., Rahdar, A. Environ. Chem. Lett. 2022, 20, 3153; https://doi.org/10.1007/s10311-022-01444-7.Suche in Google Scholar
18. Khan, T., Ullah, N., Khan, M. A., Nadhman, A. Adv. Colloid Interface Sci. 2019, 272, 102017; https://doi.org/10.1016/j.cis.2019.102017.Suche in Google Scholar PubMed
19. Reddy, V., Torati, R. S., Oh, S., Kim, C. Ind. Eng. Chem. Res. 2013, 52, 556; https://doi.org/10.1021/ie302037c.Suche in Google Scholar
20. Narayanan, K. B., Sakthivel, N. Mater. Lett. 2008, 62, 4588; https://doi.org/10.1016/j.matlet.2008.08.044.Suche in Google Scholar
21. Ghodake, G., Deshpande, N., Lee, Y., Jin, E. Colloids Surf., B 2010, 75, 584; https://doi.org/10.1016/j.colsurfb.2009.09.040.Suche in Google Scholar PubMed
22. Philip, D. Spectrochim. Acta, Part A 2009, 73, 650; https://doi.org/10.1016/j.saa.2009.03.007.Suche in Google Scholar PubMed
23. Philip, D. Phys. E 2010, 42, 1417; https://doi.org/10.1016/j.physe.2009.11.081.Suche in Google Scholar
24. Smitha, S., Philip, D., Gopchandran, K. Spectrochim. Acta, Part A 2009, 74, 735; https://doi.org/10.1016/j.saa.2009.08.007.Suche in Google Scholar PubMed
25. Aromal, S. A., Philip, D. Spectrochim. Acta, Part A 2012, 97, 1.10.1016/j.saa.2012.05.083Suche in Google Scholar PubMed
26. Kumar, K. P., Paul, W., Sharma, C. P. Process Biochem. 2011, 46, 2007; https://doi.org/10.1016/j.procbio.2011.07.011.Suche in Google Scholar
27. Engelbrekt, C., SØrensen, K. H., Zhang, J., Welinder, A. C., Jensen, P. S., Ulstrup, J. J. Mater. Chem. 2009, 19, 7839; https://doi.org/10.1039/b911111e.Suche in Google Scholar
28. Krishnaswamy, K., Vali, H., Orsat, V. J. Food Eng. 2014, 142, 210; https://doi.org/10.1016/j.jfoodeng.2014.06.014.Suche in Google Scholar
29. Noruzi, M., Zare, D., Khoshnevisan, K., Davoodi, D. Spectrochim. Acta, Part A 2011, 79, 1461; https://doi.org/10.1016/j.saa.2011.05.001.Suche in Google Scholar PubMed
30. Jayaseelan, C., Ramkumar, R., Rahuman, A. A., Perumal, P. Ind. Crops Prod. 2013, 45, 423; https://doi.org/10.1016/j.indcrop.2012.12.019.Suche in Google Scholar
31. Nadaf, N. Y., Kanase, S. S. Arabian J. Chem. 2019, 12, 4806; https://doi.org/10.1016/j.arabjc.2016.09.020.Suche in Google Scholar
32. Naseem, K., Farooqi, Z. H., Begum, R., Wu, W., Irfan, A., Ajmal, M. Colloids Surf., A 2020, 594, 124646; https://doi.org/10.1016/j.colsurfa.2020.124646.Suche in Google Scholar
33. Shahid, M., Farooqi, Z. H., Begum, R., Arif, M., Wu, W., Irfan, A. Crit. Rev. Anal. Chem. 2020, 50, 513; https://doi.org/10.1080/10408347.2019.1663148.Suche in Google Scholar PubMed
34. Kumar, I., Mondal, M., Meyappan, V., Sakthivel, N. Mater. Res. Bull. 2019, 117, 18; https://doi.org/10.1016/j.materresbull.2019.04.029.Suche in Google Scholar
35. Baruah, D., Goswami, M., Yadav, R. N. S., Yadav, A., Das, A. M. J. Photochem. Photobiol. B, Biol. 2018, 186, 51; https://doi.org/10.1016/j.jphotobiol.2018.07.002.Suche in Google Scholar PubMed
36. Shen, Z., Han, G., Liu, C., Wang, X., Sun, R. J. Alloys Compd. 2016, 686, 82; https://doi.org/10.1016/j.jallcom.2016.05.348.Suche in Google Scholar
37. Aguilar, N. M., Arteaga-Cardona, F., Estévez, J., Silva-González, N., Benítez-Serrano, J., Salazar-Kuri, U. J. Environ. Chem. Eng. 2018, 6, 6275; https://doi.org/10.1016/j.jece.2018.09.056.Suche in Google Scholar
38. Feng, N., Ren, L., Wu, H., Wu, Q., Xie, Y. Carbohydr. Polym. 2019, 224, 115130; https://doi.org/10.1016/j.carbpol.2019.115130.Suche in Google Scholar PubMed
39. Yu, Y., Naik, S. S., Oh, Y., Theerthagiri, J., Lee, S. J., Choi, M. Y. J. Hazard. Mater. 2021, 420, 126585; https://doi.org/10.1016/j.jhazmat.2021.126585.Suche in Google Scholar PubMed
40. Zhang, K., Shen, M., Liu, H., Shang, S., Wang, D., Liimatainen, H. Carbohydr. Polym. 2018, 186, 132; https://doi.org/10.1016/j.carbpol.2018.01.048.Suche in Google Scholar PubMed
41. Lin, X., Wang, J., Han, X., Wu, M., Kuga, S., Huang, Y. J. Bioresour. Bioprod. 2017, 2, 149.Suche in Google Scholar
42. Abdelwahab, N., Shukry, N. Carbohydr. Polym. 2015, 115, 276; https://doi.org/10.1016/j.carbpol.2014.08.052.Suche in Google Scholar PubMed
43. Kumar, H., Gehlaut, A. K., Gaur, A., Park, J.-W., Maken, S. J. Nanosci. Nanotechnol. 2020, 20, 6413; https://doi.org/10.1166/jnn.2020.18509.Suche in Google Scholar PubMed
44. Naseem, K., Farooqi, Z. H., Begum, R., Irfan, A. J. Cleaner Prod. 2018, 187, 296; https://doi.org/10.1016/j.jclepro.2018.03.209.Suche in Google Scholar
45. Anchan, S., Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., Selvaraj, R. Biocatal. Agric. Biotechnol. 2019, 20, 101251; https://doi.org/10.1016/j.bcab.2019.101251.Suche in Google Scholar
46. Xiong, Y., Huang, L., Mahmud, S., Yang, F., Liu, H. Chin. J. Chem. Eng. 2020, 28, 1334; https://doi.org/10.1016/j.cjche.2020.02.014.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- UV spectroscopy: A novel method for determination of degree of substitution of phthaloyl group as amine protector in chitosan
- One step biogenic sugarcane bagasse mediated synthesis of gold nanoparticles and their catalytic applications in removing environmental pollutants
- Photocatalytic degradation of atrazine and abamectin using Chenopodium album leaves extract mediated copper oxide nanoparticles
- Theoretical and experimental insights into the C-steel aqueous corrosion inhibition at elevated temperatures in 1.0 M HCl via multi-carbonyl Gemini cationic surfactants
- Hysteresis in three-dimensional multi-layer molecularly thin-film lubrication
- Temperature dependent volumetric, viscometric and conductance studies of barium chloride in aqueous solution of citric acid: an insight into molecular interactions
- Experimental insights into the adsorption of newly synthesized Gemini ethoxylated surfactant on C-steel in different acidic media accompanied by DFT and MCs studies
Artikel in diesem Heft
- Frontmatter
- Original Papers
- UV spectroscopy: A novel method for determination of degree of substitution of phthaloyl group as amine protector in chitosan
- One step biogenic sugarcane bagasse mediated synthesis of gold nanoparticles and their catalytic applications in removing environmental pollutants
- Photocatalytic degradation of atrazine and abamectin using Chenopodium album leaves extract mediated copper oxide nanoparticles
- Theoretical and experimental insights into the C-steel aqueous corrosion inhibition at elevated temperatures in 1.0 M HCl via multi-carbonyl Gemini cationic surfactants
- Hysteresis in three-dimensional multi-layer molecularly thin-film lubrication
- Temperature dependent volumetric, viscometric and conductance studies of barium chloride in aqueous solution of citric acid: an insight into molecular interactions
- Experimental insights into the adsorption of newly synthesized Gemini ethoxylated surfactant on C-steel in different acidic media accompanied by DFT and MCs studies