Startseite Experimental insights into the adsorption of newly synthesized Gemini ethoxylated surfactant on C-steel in different acidic media accompanied by DFT and MCs studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental insights into the adsorption of newly synthesized Gemini ethoxylated surfactant on C-steel in different acidic media accompanied by DFT and MCs studies

  • Nasser M. El Basiony EMAIL logo , Elsayed A. Elsharaky , Dong-Hwan Kim EMAIL logo und Aziza S. El-Tabei
Veröffentlicht/Copyright: 29. Mai 2023

Abstract

Bis ethoxylated cationic surfactant (BOECS) is synthesized. The prepared surfactant’s structure configuration was verified through a variety of spectral and physicochemical techniques, including FT-IR, MS,1HNMR, and surface activity evaluations. BOECS applications as a C-steel corrosion inhibitor in 1.0 N HCl and 1.0 N H2SO4 and sulfate reducing bacteria (SRB) mitigations have been investigated thoroughly. Physical properties of the BOECS indicate its potential adsorption affinity at the air/water interface. The electrical conductivity determines the CMC value in accordance with the surface tension value. Electrochemical kinetic parameters indicate the BOECS is sorted as a mixed-type inhibitor and has an inhibition efficacy of 91.22 % and 81.26% for HCl and H2SO4, respectively. Active centers of BOECS structure enhance its adsorption at the electrolyte/C-steel. Calculated adsorption energy change (∆Gads) and theoretical adsorption energy (Eads) values suggest strong and spontaneous BOECS adsorption. The cytotoxic performance of the synthesized BOECS exhibited a potent inhibitory potential against the SRB. The outcomes of this research exhibit that the BOECS can lower SRB growth from 106 to 102 cell/mL.


Corresponding authors: Nasser M. El Basiony, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt; and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea, E-mail: ; and Dong-Hwan Kim, School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea, E-mail:
Nasser M. El Basiony and A. S. El-Tabei contributed equally to this article.

Funding source: National Research Foundation of Korea (NRF)

Award Identifier / Grant number: 2022H1D3A2A02060789

Acknowledgment

The authors are grateful to the Egyptian petroleum research institute, and the School of Chemical Engineering, Sungkyunkwan University for their support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT and Ministry of Education) (2022H1D3A2A02060789).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Li, X., Zhang, D., Liu, Z., Li, Z., Du, C., Dong, C. Share Corrosion Data. Nature 2015, 527, 441–442.10.1038/527441aSuche in Google Scholar PubMed

2. Li, X., Deng, S., Du, G. Nonionic surfactant of coconut diethanolamide as a novel corrosion inhibitor for cold rolled steel in both HCl and H 2 SO 4 solutions. J. Taiwan Inst. Chem. Eng. 2022, 131, 104171; https://doi.org/10.1016/j.jtice.2021.104171.Suche in Google Scholar

3. El-lateef, H. M. A., Shalabi, K., Sayed, A. R., Gomha, S. M., Bakir, E. M. The novel polythiadiazole polymer and its composite with a-Al (OH) 3 as inhibitors for steel alloy corrosion in molar H 2 SO 4: experimental and computational evaluations. J. Ind. Eng. Chem. 2022, 105, 238–250; https://doi.org/10.1016/j.jiec.2021.09.022.Suche in Google Scholar

4. El Achouri, M., Infante, M. R., Izquierdo, F., Kertit, S., Gouttaya, H., Nciri, B. Synthesis of some cationic gemini surfactants and their inhibitive e € ect on iron corrosion in hydrochloric acid medium. 2001, 43, 19–35; https://doi.org/10.1016/s0010-938x(00)00063-9.Suche in Google Scholar

5. Sliem, M. H., Afifi, M., Radwan, A. B., Fayyad, E. M., Shibl, M. F., Heakal, F. E., Aboubakr, M. A. AEO7 surfactant as an eco-friendly corrosion inhibitor for carbon steel in HCl. Solution 2019, 9, 1–16. https://doi.org/10.1038/s41598-018-37254-7.Suche in Google Scholar PubMed PubMed Central

6. Tian, T., Hu, X., Guan, P., Wang, S., Ding, X. Density and thermodynamic performance of energetic ionic liquids based on 1-alkyl/esteryl-4-amino-1,2,4-triazolium. J. Mol. Liq. 2017, 248, 70–80; https://doi.org/10.1016/j.molliq.2017.09.024.Suche in Google Scholar

7. Goyal, M., Kumar, S., Bahadur, I., Verma, C., Ebenso, E. E. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review. J. Mol. Liq. 2018, 256, 565–573; https://doi.org/10.1016/j.molliq.2018.02.045.Suche in Google Scholar

8. Jackson, J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry. A Review 2014, 86, 17–41; https://doi.org/10.1016/j.corsci.2014.04.044.Suche in Google Scholar

9. Raja, P. B., Ismail, M., Ghoreishiamiri, S., Mirza, J., Ismail, M. C., Kakooei, S., Rahim, A. A. Reviews on corrosion inhibitors : a short view reviews on corrosion inhibitors : a short view. Chem. Eng. Commun. 2016, 203, 1145–1156; https://doi.org/10.1080/00986445.2016.1172485.Suche in Google Scholar

10. El-lateef, H. M. A., Abo-riya, M. A., Tantawy, A. H. Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic gemini surfactants on carbon steel pipelines in acid pickling processes. Eval. Progr. Plann. 2016, 108, 94–110; https://doi.org/10.1016/j.corsci.2016.03.004.Suche in Google Scholar

11. El-lateef, H. M. A., Abbasov, V. M., Aliyeva, L. I., Qasimov, E. E., Ismayilov, I. T. Inhibition of carbon steel corrosion in CO 2-saturated brine using some newly surfactants based on palm oil : experimental and theoretical investigations. Mater. Chem. Phys. 2013, 142, 502–512; https://doi.org/10.1016/j.matchemphys.2013.07.044.Suche in Google Scholar

12. Malik, M. A., Hashim, M. A., Nabi, F., AL-Thabaiti, S. A., Khan, Z. Anti-corrosion ability of surfactants: a review. Int. J. Electrochem. Sci. 2011, 6, 1927–1948.Suche in Google Scholar

13. Zhu, Y., Free, M. L., Woollam, R., Durnie, W. Progress in Materials Science A review of surfactants as corrosion inhibitors and associated modeling. Prog. Mater. Sci. 2017, 90, 159–223; https://doi.org/10.1016/j.pmatsci.2017.07.006.Suche in Google Scholar

14. Masroor, S., Mobin, M. Application of surfactants as corrosion inhibitor for different metals and alloys. A Review 2016, 7, 575–585.Suche in Google Scholar

15. Hegazy, M. A. Novel cationic surfactant based on triazole as a corrosion inhibitor for carbon steel in phosphoric acid produced by dihydrate wet process. J. Mol. Liq. 2015, 208, 227–236; https://doi.org/10.1016/j.molliq.2015.04.042.Suche in Google Scholar

16. Hegazy, M. A. Synthesis and characterization of a novel nonionic gemini surfactant as corrosion inhibitor for carbon steel in acidic solution synthesis and characterization of a novel nonionic gemini surfactant as corrosion inhibitor for carbon steel in acidic solution. GCEC 2015, 202, 851–863; https://doi.org/10.1080/00986445.2013.867260.Suche in Google Scholar

17. Hegazy, M. A., Bedair, A. H., Sadeq, M. A. Synthesis and inhibitive performance of novel cationic and gemini surfactants on carbon steel. RSC Adv. 2015, 5, 64633–64650; https://doi.org/10.1039/c5ra06473b.Suche in Google Scholar

18. El-tabei, A. S., Hegazy, M. A., Bedair, A. H., El Basiony, N., Sadeq, M. A. Experimental and theoretical (DFT & MC) studies for newly synthesized cationic amphiphilic substance based on a naphthol moiety as corrosion inhibitor for carbon steel during the pickling process. J. Mol. Liq. 2021, 331, 115692; https://doi.org/10.1016/j.molliq.2021.115692.Suche in Google Scholar

19. Tanji, Y., Toyama, K., Hasegawa, R., Miyanaga, K. Biological souring of crude oil under anaerobic conditions. Biochem. Eng. J. 2014, 90, 114–120; https://doi.org/10.1016/j.bej.2014.05.023.Suche in Google Scholar

20. Labena, A., Hegazy, M. A., Horn, H., Mu, E. Cationic gemini surfactant as a corrosion inhibitor and a biocide for high salinity sulfidogenic bacteria originating from an oil-field water. J. Surfact. Deterg. 2014, 17, 419–431; https://doi.org/10.1007/s11743-013-1551-4.Suche in Google Scholar

21. Nady, H., Elgendy, A., Arafa, W. A. A., Gad, E. S. Insight into the inhibition performance of thiosemicarbazones as efficient inhibitors for copper in acidic environment: combined experimental and computational investigations. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 647, 129208; https://doi.org/10.1016/j.colsurfa.2022.129208.Suche in Google Scholar

22. Li, X., Deng, S., Lin, T., Xie, X., Du, G. 2-Mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO 3 solution. Eval. Progr. Plann. 2017, 118, 202–216; https://doi.org/10.1016/j.corsci.2017.02.011.Suche in Google Scholar

23. Ali, A. I., Mahrous, Y. S. Corrosion inhibition of C-steel in acidic media from fruiting bodies of Melia azedarach L extract and a synergistic Ni 2 + additive. RSC Adv. 2017, 7, 23687–23698; https://doi.org/10.1039/c7ra00111h.Suche in Google Scholar

24. El Basiony, N. M., Tawfik, E. H., El-raouf, M. A., Fadda, A. A., Waly, M. M. Synthesis, characterization, theoretical calculations (DFT and MC), and experimental of different substituted pyridine derivatives as corrosion mitigation for X-65 steel corrosion in 1M HCl. J. Mol. Struct. 2021, 1231, 129999; https://doi.org/10.1016/j.molstruc.2021.129999.Suche in Google Scholar

25. Muyzer, G. The ecology and biotechnology of sulphate-reducing. Nat. Rev. Microbiol. 2014, 45, 441–454. https://doi.org/10.1038/nrmicro1892.Suche in Google Scholar PubMed

26. Shaban, S. M., Badr, E. a., Shenashen, M. A., Farag, A. A. Fabrication and characterization of encapsulated Gemini cationic surfactant as anticorrosion material for carbon steel protection in down-hole pipelines. Environ. Technol. Innov. 2021, 23, 101603; https://doi.org/10.1016/j.eti.2021.101603.Suche in Google Scholar

27. Badawi, A. M., Hegazy, M. A., El-Sawy, A. A., Ahmed, H. M., Kamel, W. M. Novel quaternary ammonium hydroxide cationic surfactants as corrosion inhibitors for carbon steel and as biocides for sulfate reducing bacteria (SRB). Mater. Chem. Phys. 2010, 124, 458–465; https://doi.org/10.1016/j.matchemphys.2010.06.066.Suche in Google Scholar

28. Samakande, A., Chaghi, R., Derrien, G., Charnay, C. J. Colloid Interface Sci. 2008, 320, 315–320; https://doi.org/10.1016/j.jcis.2008.01.022.Suche in Google Scholar PubMed

29. El-Sharaky, E., Khamis, E., Elazabawy, O., El-Tabei, A. New star shape tetra-cationic surfactant synthesis and evaluation as corrosion inhibitor for carbon steel in different acidic media. Z. Phys. Chem. 2019, 233, 1571–1601; https://doi.org/10.1515/zpch-2018-1243.Suche in Google Scholar

30. Huibers, P. D. T., Lobanov, V. S., Katritzky, A. R., Shah, D. O., Karelson, M., Prediction of critical micelle concentration using a quantitative structure–property relationship approach. 1. Nonionic surfactants. Langmuir 1996, 12, 1462–1470. https://doi.org/10.1021/la950581j.Suche in Google Scholar

31. El Basiony, N. M., Hegazy, M. A. Newly synthesized quaternary ammonium bis-cationic surfactant utilized for mitigation of carbon steel acidic corrosion ; theoretical and experimental investigations. J. Mol. Struct. 2022, 1262, 133063. https://doi.org/10.1016/j.molstruc.2022.133063.Suche in Google Scholar

32. Lei, X., Wang, H., Feng, Y., Zhang, J., Sun, X., Lai, S., Wang, Z., Kang, S. A Novel inhibitor for mild steel against acidic. RSC Adv. 2015, 5, 99084–99094; https://doi.org/10.1039/c5ra15002g.Suche in Google Scholar

33. Sayın, K., Keles, H. Experimental and theoretical investigation of inhibition behavior of 2-((4-(dimethylamino)benzylidene) amino) benzenethiol for carbon steel in HCl solution. Corros. Sci. 2021, 184, 109376; https://doi.org/10.1016/j.corsci.2021.109376.Suche in Google Scholar

34. El-Tabey, A. E., El Basiony, N. M., El-Tabei, A. S., El-Tabey, A. E., El Basiony, N. M. Newly imine-azo dicationic amphiphilic for corrosion and sulfate-reducing bacteria inhibition in petroleum processes: laboratory and theoretical studies. Appl. Surf. Sci. 2022, 573, 151531; https://doi.org/10.1016/j.apsusc.2021.151531.Suche in Google Scholar

35. Han, P., Chen, C., Li, W., Yu, H., Xu, Y., Ma, L., Zheng, Y. Synergistic effect of mixing cationic and nonionic surfactants on corrosion inhibition of mild steel in HCl: experimental and theoretical investigations. J. Colloid Interface Sci. 2018, 516, 398–406; https://doi.org/10.1016/j.jcis.2018.01.088.Suche in Google Scholar PubMed

36. Elaraby, A., Elgendy, A., Abd-El-Raouf, M., Migahed, M. A., El-Tabei, A. S., Abdullah, A. M., Al-Qahtani, N. H., Alharbi, S. M., Shaban, S. M., Kim, D., El Basiony, N. Synthesis of Gemini cationic surfactants based on natural nicotinic acid and evaluation of their inhibition performance at C-steel/1 M HCl interface: electrochemical and computational investigations. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 659, 130687; https://doi.org/10.1016/j.colsurfa.2022.130687.Suche in Google Scholar

37. Haque, J., Verma, C., Srivastava, V., Quraishi, M. A., Ebenso, E. E. Experimental and quantum chemical studies of functionalized tetrahydropyridines as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Results Phys 2018, 9, 1481–1493; https://doi.org/10.1016/j.rinp.2018.04.069.Suche in Google Scholar

38. Meng, Y., Ning, W., Xu, B., Yang, W., Zhang, K., Chen, Y., Li, L., Liu, X., Zheng, J., Zhang, Y. Inhibition of mild steel corrosion in hydrochloric acid using two novel pyridine Schi ff base derivatives: a comparative study of experimental and theoretical results. RSC Adv. 2017, 7, 43014–43029; https://doi.org/10.1039/c7ra08170g.Suche in Google Scholar

39. Al-Sabagh, A. M., El Basiony, N. M., Sadeek, S. A., Migahed, M. A. Scale and corrosion inhibition performance of the newly synthesized anionic surfactant in desalination plants: experimental, and theoretical investigations. Desalination 2018, 437, 45–58; https://doi.org/10.1016/j.desal.2018.01.036.Suche in Google Scholar

40. Mu, G., Li, X., Qu, Q., Zhou, J. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution. RSC Adv. 2006, 48, 445–459; https://doi.org/10.1016/j.corsci.2005.01.013.Suche in Google Scholar

41. Obot, I. B., Ebenso, E. E., Kabanda, M. M. Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0. 5 M HCl: experimental and theoretical investigation. J. Environ. Chem. Eng. 2013, 1, 431–439; https://doi.org/10.1016/j.jece.2013.06.007.Suche in Google Scholar

42. Aiad, I., Shaban, S. M., El-Sukkary, M. M., El-Awady, M. Y., Soliman, E. A. Electrical and gravimetric estimation of the corrosion inhibition of three synthesized cationic surfactants N-(3-(Butylidene Amino) Propyl)-N, N-dimethyl alkan-1-ammonium bromide derivatives in 1 M HCl. Mater. Perform. Charact. 2017, 6, 429–450; https://doi.org/10.1520/MPC20170001.Suche in Google Scholar

43. Li, X., Deng, S., Fu, H. Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor for steel in HCl and H 2 SO 4 solutions. Corros. Sci. 2011, 53, 302–309; https://doi.org/10.1016/j.corsci.2010.09.036.Suche in Google Scholar

44. Banerjee, G., Malhotra, S. N. Contribution to adsorption of aromatic amines on mild steel surface from HCl solutions by impedance, UV, and Raman spectroscopy. Corrosion 1992, 48, 10–15; https://doi.org/10.5006/1.3315912.Suche in Google Scholar

45. Roy, S. C., Roy, S. K., Sircar, S. C. Critique of inhibitor evaluation by polarisation measurements. Br. Corros. J. 1988, 23, 102–104; https://doi.org/10.1179/000705988798270956.Suche in Google Scholar

46. Salim, M. M., Azab, M. M., Abo-Riya, M. A., Abd-El-Raouf, M., Basiony, N. M. E. L. Controlling C-steel dissolution in 1 M HCl solution using newly synthesized ρ-substituted imine derivatives: theoretical (DFT and MCs) and experimental investigations. J. Mol. Struct. 2023, 1274, 134357; https://doi.org/10.1016/j.molstruc.2022.134357.Suche in Google Scholar

47. Bentiss, F., Traisnel, M., Lagrenee, M. The substituted 1, 3, 4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media. Corros. Sci. 2000, 42, 127–146; https://doi.org/10.1016/s0010-938x(99)00049-9.Suche in Google Scholar

48. Abd El Wanees, S., ElBasiony, N. M., Al-Sabagh, A. M., Alsharif, M. A., Abd El Haleem, S. M., Migahed, M. A. Controlling of H2 gas production during Zn dissolution in HCl solutions. J. Mol. Liq. 2017, 248, 943–952; https://doi.org/10.1016/j.molliq.2017.10.035.Suche in Google Scholar

49. Khalaf, M. M., Tantawy, A. H., Soliman, K. A., El-lateef, H. M. A. Cationic gemini-surfactants based on waste cooking oil as new ‘green’ inhibitors for N80-steel corrosion in sulphuric acid : a combined empirical and theoretical approaches. J. Mol. Struct. 2020, 1203, 127442. https://doi.org/10.1016/j.molstruc.2019.127442.Suche in Google Scholar

50. Khamis, A., Saleh, M. M., Awad, M. I. Synergistic inhibitor effect of cetylpyridinium chloride and other halides on the corrosion of mild steel in 0 . 5 M H 2 SO 4. Corros. Sci. 2013, 66, 343–349; https://doi.org/10.1016/j.corsci.2012.09.040.Suche in Google Scholar

51. Al-Sabagh, A. M., Migahed, M. A., Sadeek, S. A., El Basiony, N. M. Inhibition of mild steel corrosion and calcium sulfate formation in highly saline synthetic water by a newly synthesized anionic carboxylated surfactant. Egypt. J. Pet. 2018, 27, 811–821; https://doi.org/10.1016/j.ejpe.2017.12.003.Suche in Google Scholar

52. Abd-Elaal, A. A., Elbasiony, N. M., Shaban, S. M., Zaki, E. G. Studying the corrosion inhibition of some prepared nonionic surfactants based on 3-(4-hydroxyphenyl) propanoic acid and estimating the influence of silver nanoparticles on the surface parameters. J. Mol. Liq. 2018, 249, 304–317; https://doi.org/10.1016/j.molliq.2017.11.052.Suche in Google Scholar

53. Li, X., Deng, S., Fu, H. Inhibition of the corrosion of steel in HCl, H 2SO 4 solutions by bamboo leaf extract. Corros. Sci. 2012, 62, 163–175; https://doi.org/10.1016/j.corsci.2012.05.008.Suche in Google Scholar

54. Daoud, D., Douadi, T., Issaadi, S., Chafaa, S. Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros. Sci. 2014, 79, 50–58; https://doi.org/10.1016/j.corsci.2013.10.025.Suche in Google Scholar

55. Dahmani, K., Galai, M., Ouakki, M., Elgendy, A., Ez-Zriouli, R., Lachhab, R., Briche, S., Cherkaoui, M. Corrosion inhibition of copper in sulfuric acid via environmentally friendly inhibitor (Myrtus Communis): combining experimental and theoretical methods. J. Mol. Liq. 2022, 347, 117982; https://doi.org/10.1016/j.molliq.2021.117982.Suche in Google Scholar

56. Bahrawy, A., Elgendy, A., Alharbi, S. M., El-Rabiei, M. M., Deyab, M. A., Nady, H. Electrochemistry and computational mechanisms responsible for the anti-corrosion properties of particular biomolecules on Fe-Cr-Mn alloy in a bio-simulated environment. J. Phys. Chem. Solid. 2023, 174, 111166; https://doi.org/10.1016/j.jpcs.2022.111166.Suche in Google Scholar

57. El-Tabei, A. S., Hegazy, M. A., Bedair, A. H., El Basiony, N. M., Sadeq, M. A. Novel macrocyclic cationic surfactants: synthesis, experimental and theoretical studies of their corrosion inhibition activity for carbon steel and their antimicrobial activities. J. Mol. Liq. 2022, 345, 116990; https://doi.org/10.1016/j.molliq.2021.116990.Suche in Google Scholar

58. Shafek, S. H., Ghiaty, E. A., El Basiony, N. M., Badr, E. A., Shaban, S. M. Preparation of zwitterionic ionic surfactants-based sulphonyl for steel protections: experimental and theoretical insights. Z. Phys. Chem. 2023, 237, 1–33; https://doi.org/10.1515/zpch-2022-0135.Suche in Google Scholar

59. Dahmani, K., Galai, M., Ech-chebab, A., Ouakki, M., Kadiri, L., Elgendy, A., Ez-Zriouli, R., Cherkaoui, M. Pistacia lentiscus extract as a green inhibitor for copper corrosion in 0.5 M of H2SO4: electrochemical characterization and theoretical investigations. J. Appl. Electrochem. 2022, 52, 1629–1646; https://doi.org/10.1007/s10800-022-01732-8.Suche in Google Scholar

60. Elgendy, A., Elkholy, A. E., El Basiony, N. M., Migahed, M. A. Monte Carlo simulation for the antiscaling performance of Gemini ionic liquids. J. Mol. Liq. 2019, 285, 408–415; https://doi.org/10.1016/j.molliq.2019.04.117.Suche in Google Scholar

61. Liu, H., Gu, T., Zhang, G., Cheng, Y., Wang, H., Liu, H. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Eval. Progr. Plann. 2016, 102, 93–102; https://doi.org/10.1016/j.corsci.2015.09.023.Suche in Google Scholar

62. Katebian, L., Gomez, E., Skillman, L., Li, D., Ho, G., Jiang, S. C. Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling. DES 2016, 393, 135–143; https://doi.org/10.1016/j.desal.2016.01.013.Suche in Google Scholar

63. Tang, K., Baskaran, V., Nemati, M. Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 2009, 44, 73–94. https://doi.org/10.1016/j.bej.2008.12.011.Suche in Google Scholar

64. Kahrilas, G. A., Blotevogel, J., Stewart, P. S., Borch, T. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ. Sci. Technol. 2015, 1, 16–32.10.1021/es503724kSuche in Google Scholar PubMed

65. Steward, C. D., Rasheed, J. K., Hubert, S. K., Biddle, J. W., Raney, P. M., Anderson, G. J., Williams, P. P., Brittain, K. L., Oliver, A., McGowan, J. E. Jr, Tenover, F. C. Characterization of clinical isolates of klebsiella pneumoniae from 19 laboratories using the National committee for clinical laboratory standards extended-spectrum β-lactamase detection methods. J. Clin. Microbiol. 2001, 39, 2864–2872; https://doi.org/10.1128/JCM.39.8.2864-2872.2001.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2022-0138).


Received: 2022-09-27
Accepted: 2023-05-03
Published Online: 2023-05-29
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0138/html
Button zum nach oben scrollen