Home One step biogenic sugarcane bagasse mediated synthesis of gold nanoparticles and their catalytic applications in removing environmental pollutants
Article
Licensed
Unlicensed Requires Authentication

One step biogenic sugarcane bagasse mediated synthesis of gold nanoparticles and their catalytic applications in removing environmental pollutants

  • Muqaddas Naeem , Ahmad Irfan , Robina Begum EMAIL logo and Zahoor H. Farooqi EMAIL logo
Published/Copyright: May 24, 2023

Abstract

Biogenic green synthesis of gold nanoparticles (Au-NPs) was carried out by utilizing fated waste product of sugarcane industry. Sugarcane bagasse extract was obtained by constant stirring of sugarcane bagasse in aqueous medium for 20 min. Synthesis of gold nanoparticles was carried out at different values of pH of the medium in order to determine the effect of pH on the formation of gold nanoparticles. Fabrication of gold nanoparticles was confirmed by UV–Vis spectroscopic analysis of the reaction mixture and XRD analysis of the sample. FTIR was used to identify different functionalities present in extract responsible for the formation of gold nanoparticles. Biogenic Au-NPs were utilized as a catalyst for the reduction/degradation of nitroarenes and organic dyes such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), Congo red (CR), methyl red (MR), brilliant blue (BB), rhodamine B (Rh B) and methyl orange (MO). Kinetics of these reactions proves the efficiency and effectiveness of sugarcane bagasse mediated gold nano-catalysts making them an excellent tool for industrial applications.


Corresponding authors: Robina Begum and Zahoor H. Farooqi, School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan, E-mail: ,

Funding source: University of the Punjab, Lahore, Pakistan

Award Identifier / Grant number: D/695/ORIC

  1. Research funding: R. Begum and Z. H. Farooqi are thankful to University of the Punjab, Lahore, Pakistan for research grant for fiscal year 2022–2023 (Ref. No.D/695/ORIC dated 23-12-2022). A. Irfan is grateful to King Khalid University, Saudi Arabia for research grant (RGP1/36/43).

  2. Conflict of interest statement: There is no conflict of interest.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. Begum, R., Rehan, R., Farooqi, Z. H., Butt, Z., Ashraf, S. J. Nanopart. Res. 2016, 18, 231; https://doi.org/10.1007/s11051-016-3536-5.Search in Google Scholar

2. Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M., Kumar, S. T., Rao, M. J. bioremediat. biodegrad. 2015, 6, 312.10.1007/s13204-015-0473-zSearch in Google Scholar

3. Arif, M., Shahid, M., Irfan, A., Nisar, J., Wu, W., Farooqi, Z. H., Begum, R. RSC Adv. 2022, 12, 5105; https://doi.org/10.1039/d1ra09380k.Search in Google Scholar PubMed PubMed Central

4. Vidhu, V., Philip, D. Micron 2014, 56, 54; https://doi.org/10.1016/j.micron.2013.10.006.Search in Google Scholar PubMed

5. Umamaheswari, C., Lakshmanan, A., Nagarajan, N. J. Photochem. Photobiol. B, Biol. 2018, 178, 33; https://doi.org/10.1016/j.jphotobiol.2017.10.017.Search in Google Scholar PubMed

6. Devatha, C., Thalla, A. K., Katte, S. Y. J. Cleaner Prod. 2016, 139, 1425; https://doi.org/10.1016/j.jclepro.2016.09.019.Search in Google Scholar

7. Farooqi, Z. H., Iqbal, S., Khan, S. R., Kanwal, F., Begum, R. e-Polym. 2014, 14, 313; https://doi.org/10.1515/epoly-2014-0111.Search in Google Scholar

8. Begum, R., Farooqi, Z. H., Ahmed, E., Naseem, K., Ashraf, S., Sharif, A., Rehan, R. Appl. Organomet. Chem. 2017, 31, e3563; https://doi.org/10.1002/aoc.3563.Search in Google Scholar

9. Farooqi, Z. H., Sakhawat, T., Khan, S. R., Kanwal, F., Usman, M., Begum, R. Mater. Sci.–Poland 2015, 33, 185; https://doi.org/10.1515/msp-2015-0025.Search in Google Scholar

10. Shen, W., Qu, Y., Pei, X., Li, S., You, S., Wang, J., Zhang, Z., Zhou, J. J. Hazard. Mater. 2017, 321, 299; https://doi.org/10.1016/j.jhazmat.2016.07.051.Search in Google Scholar PubMed

11. Moreau, F., Bond, G. C., Taylor, A. O. J. Catal. 2005, 231, 105; https://doi.org/10.1016/j.jcat.2005.01.030.Search in Google Scholar

12. Ho, K., Yeung, K. J. Catal. 2006, 242, 131; https://doi.org/10.1016/j.jcat.2006.06.005.Search in Google Scholar

13. Pasquato, L., Rancan, F., Scrimin, P., Mancin, F., Frigeri, C. Chem. Commun. 2000, 22, 2253; https://doi.org/10.1039/b005244m.Search in Google Scholar

14. Song, K. C., Lee, S. M., Park, T. S., Lee, B. S. Korean J. Chem. Eng. 2009, 26, 153; https://doi.org/10.1007/s11814-009-0024-y.Search in Google Scholar

15. Guzmán, M. G., Dille, J., Godet, S. Int. J. Chem. Biomol. Eng 2009, 2, 104.Search in Google Scholar

16. Chirea, M., Freitas, A., Vasile, B. S., Ghitulica, C., Pereira, C. M., Silva, F. Langmuir 2011, 27, 3906; https://doi.org/10.1021/la104092b.Search in Google Scholar PubMed

17. Jadoun, S., Chauhan, N. P. S., Zarrintaj, P., Barani, M., Varma, R. S., Chinnam, S., Rahdar, A. Environ. Chem. Lett. 2022, 20, 3153; https://doi.org/10.1007/s10311-022-01444-7.Search in Google Scholar

18. Khan, T., Ullah, N., Khan, M. A., Nadhman, A. Adv. Colloid Interface Sci. 2019, 272, 102017; https://doi.org/10.1016/j.cis.2019.102017.Search in Google Scholar PubMed

19. Reddy, V., Torati, R. S., Oh, S., Kim, C. Ind. Eng. Chem. Res. 2013, 52, 556; https://doi.org/10.1021/ie302037c.Search in Google Scholar

20. Narayanan, K. B., Sakthivel, N. Mater. Lett. 2008, 62, 4588; https://doi.org/10.1016/j.matlet.2008.08.044.Search in Google Scholar

21. Ghodake, G., Deshpande, N., Lee, Y., Jin, E. Colloids Surf., B 2010, 75, 584; https://doi.org/10.1016/j.colsurfb.2009.09.040.Search in Google Scholar PubMed

22. Philip, D. Spectrochim. Acta, Part A 2009, 73, 650; https://doi.org/10.1016/j.saa.2009.03.007.Search in Google Scholar PubMed

23. Philip, D. Phys. E 2010, 42, 1417; https://doi.org/10.1016/j.physe.2009.11.081.Search in Google Scholar

24. Smitha, S., Philip, D., Gopchandran, K. Spectrochim. Acta, Part A 2009, 74, 735; https://doi.org/10.1016/j.saa.2009.08.007.Search in Google Scholar PubMed

25. Aromal, S. A., Philip, D. Spectrochim. Acta, Part A 2012, 97, 1.10.1016/j.saa.2012.05.083Search in Google Scholar PubMed

26. Kumar, K. P., Paul, W., Sharma, C. P. Process Biochem. 2011, 46, 2007; https://doi.org/10.1016/j.procbio.2011.07.011.Search in Google Scholar

27. Engelbrekt, C., SØrensen, K. H., Zhang, J., Welinder, A. C., Jensen, P. S., Ulstrup, J. J. Mater. Chem. 2009, 19, 7839; https://doi.org/10.1039/b911111e.Search in Google Scholar

28. Krishnaswamy, K., Vali, H., Orsat, V. J. Food Eng. 2014, 142, 210; https://doi.org/10.1016/j.jfoodeng.2014.06.014.Search in Google Scholar

29. Noruzi, M., Zare, D., Khoshnevisan, K., Davoodi, D. Spectrochim. Acta, Part A 2011, 79, 1461; https://doi.org/10.1016/j.saa.2011.05.001.Search in Google Scholar PubMed

30. Jayaseelan, C., Ramkumar, R., Rahuman, A. A., Perumal, P. Ind. Crops Prod. 2013, 45, 423; https://doi.org/10.1016/j.indcrop.2012.12.019.Search in Google Scholar

31. Nadaf, N. Y., Kanase, S. S. Arabian J. Chem. 2019, 12, 4806; https://doi.org/10.1016/j.arabjc.2016.09.020.Search in Google Scholar

32. Naseem, K., Farooqi, Z. H., Begum, R., Wu, W., Irfan, A., Ajmal, M. Colloids Surf., A 2020, 594, 124646; https://doi.org/10.1016/j.colsurfa.2020.124646.Search in Google Scholar

33. Shahid, M., Farooqi, Z. H., Begum, R., Arif, M., Wu, W., Irfan, A. Crit. Rev. Anal. Chem. 2020, 50, 513; https://doi.org/10.1080/10408347.2019.1663148.Search in Google Scholar PubMed

34. Kumar, I., Mondal, M., Meyappan, V., Sakthivel, N. Mater. Res. Bull. 2019, 117, 18; https://doi.org/10.1016/j.materresbull.2019.04.029.Search in Google Scholar

35. Baruah, D., Goswami, M., Yadav, R. N. S., Yadav, A., Das, A. M. J. Photochem. Photobiol. B, Biol. 2018, 186, 51; https://doi.org/10.1016/j.jphotobiol.2018.07.002.Search in Google Scholar PubMed

36. Shen, Z., Han, G., Liu, C., Wang, X., Sun, R. J. Alloys Compd. 2016, 686, 82; https://doi.org/10.1016/j.jallcom.2016.05.348.Search in Google Scholar

37. Aguilar, N. M., Arteaga-Cardona, F., Estévez, J., Silva-González, N., Benítez-Serrano, J., Salazar-Kuri, U. J. Environ. Chem. Eng. 2018, 6, 6275; https://doi.org/10.1016/j.jece.2018.09.056.Search in Google Scholar

38. Feng, N., Ren, L., Wu, H., Wu, Q., Xie, Y. Carbohydr. Polym. 2019, 224, 115130; https://doi.org/10.1016/j.carbpol.2019.115130.Search in Google Scholar PubMed

39. Yu, Y., Naik, S. S., Oh, Y., Theerthagiri, J., Lee, S. J., Choi, M. Y. J. Hazard. Mater. 2021, 420, 126585; https://doi.org/10.1016/j.jhazmat.2021.126585.Search in Google Scholar PubMed

40. Zhang, K., Shen, M., Liu, H., Shang, S., Wang, D., Liimatainen, H. Carbohydr. Polym. 2018, 186, 132; https://doi.org/10.1016/j.carbpol.2018.01.048.Search in Google Scholar PubMed

41. Lin, X., Wang, J., Han, X., Wu, M., Kuga, S., Huang, Y. J. Bioresour. Bioprod. 2017, 2, 149.Search in Google Scholar

42. Abdelwahab, N., Shukry, N. Carbohydr. Polym. 2015, 115, 276; https://doi.org/10.1016/j.carbpol.2014.08.052.Search in Google Scholar PubMed

43. Kumar, H., Gehlaut, A. K., Gaur, A., Park, J.-W., Maken, S. J. Nanosci. Nanotechnol. 2020, 20, 6413; https://doi.org/10.1166/jnn.2020.18509.Search in Google Scholar PubMed

44. Naseem, K., Farooqi, Z. H., Begum, R., Irfan, A. J. Cleaner Prod. 2018, 187, 296; https://doi.org/10.1016/j.jclepro.2018.03.209.Search in Google Scholar

45. Anchan, S., Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., Selvaraj, R. Biocatal. Agric. Biotechnol. 2019, 20, 101251; https://doi.org/10.1016/j.bcab.2019.101251.Search in Google Scholar

46. Xiong, Y., Huang, L., Mahmud, S., Yang, F., Liu, H. Chin. J. Chem. Eng. 2020, 28, 1334; https://doi.org/10.1016/j.cjche.2020.02.014.Search in Google Scholar

Received: 2022-09-05
Accepted: 2023-05-08
Published Online: 2023-05-24
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0125/html
Scroll to top button