Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
-
Arif Nazir
, Mohsan Raza
, Mazhar Abbas , Shaista Abbas , Abid Ali , Zahid Ali , Umer Younas , Samiah H. Al-Mijalli and Munawar Iqbal
Abstract
In the present study, biological method was opted to synthesize ZnO NPs from Rumex dentatus plant. 0.1 M solution of zinc nitrate hexahydrate is mixed with the aqueous solution of R. dentatus plant leaves extract. The proportion of each solution was 1:1. Extract of plant leaves act as reducing agent. Firstly, the color changed from dark green to brown was observed and precipitates of light brown color appeared. Characterization of produced ZnO NPs was done using UV–Visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-rays (EDX) and X-ray diffraction (XRD) spectroscopy. The prepared ZnO NPS shows maximum absorption at 373 nm, in UV–Visible range. The shape of synthesized ZnO NPs is displayed by SEM. XRD analysis explains the average size of NPs is 6.19 nm. EDX tells about the percentage composition of synthesized ZnO NPs. Antibacterial analysis declared the NPs as good antibacterial agents. Photocatalytic activity of ZnO NPs was done using methyl orange dye. It was concluded that ZnO NPs can degrade toxic pollutants especially dyes.
Acknowledgments
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R158), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R158) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Vellayappan, M. V., Jaganathan, S. K., Manikandan, A. RSC Adv. 2016, 6, 114859–114878; https://doi.org/10.1039/c6ra24590k.Search in Google Scholar
2. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S. K., Arul Antony, S. Nanosci. Nanotechnol. Lett. 2016, 8, 438–443; https://doi.org/10.1166/nnl.2016.2150.Search in Google Scholar
3. Zaman, Q. U., Anwar, S., Mehmood, F., Nawaz, R., Masood, N., Nazir, A., Iqbal, M., Nazir, S., Sultan, K. Z. Phys. Chem. 2021, 235, 1041–1053; https://doi.org/10.1515/zpch-2020-1640.Search in Google Scholar
4. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar
5. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265–279; https://doi.org/10.1515/zpch-2019-1455.Search in Google Scholar
6. Nazir, A., Khalid, F., Rehman, S. U., Sarwar, M., Iqbal, M., Yaseen, M., Iftikhar Khan, M., Abbas, M. Z. Phys. Chem. 2021, 235, 769–784; https://doi.org/10.1515/zpch-2019-1558.Search in Google Scholar
7. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607; https://doi.org/10.1515/zpch-2020-1803.Search in Google Scholar
8. Abbas, M., Hussain, T., Iqbal, J., Rehman, A. U., Zaman, M. A., Jilani, K., Masood, N., Al-Mijalli, S. H., Iqbal, M., Nazir, A. Pol. J. Environ. Stud. 2022, 31, 533–538; https://doi.org/10.15244/pjoes/135764.Search in Google Scholar
9. Nazir, A., Akbar, A., Baghdadi, H. B., ur Rehman, S., Al-Abbad, E., Fatima, M., Iqbal, M., Tamam, N., Alwadai, N., Abbas, M. Arab. J. Chem. 2021, 14, 103251; https://doi.org/10.1016/j.arabjc.2021.103251.Search in Google Scholar
10. Majid, F., Wahid, I., Ata, S., Bibi, I., Ali, M. D., Malik, A., Alwadai, N., Iqbal, M., Nazir, A. Mater. Chem. Phys. 2021, 264, 124451; https://doi.org/10.1016/j.matchemphys.2021.124451.Search in Google Scholar
11. Ali, S., Iqbal, M., Naseer, A., Yaseen, M., Bibi, I., Nazir, A., Khan, M. I., Tamam, N., Alwadai, N., Rizwan, M., Abbas, M. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100511; https://doi.org/10.1016/j.enmm.2021.100511.Search in Google Scholar
12. Seevakan, K., Manikandan, A., Devendran, P., Shameem, A., Alagesan, T. Ceram. Int. 2018, 44, 13879–13887; https://doi.org/10.1016/j.ceramint.2018.04.235.Search in Google Scholar
13. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1–8.Search in Google Scholar
14. Al-Fa’ouri, A. M., Abu-Kharma, M. H., Awwad, A. M. Chem. Int. 2021, 7, 155–162.Search in Google Scholar
15. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151–159.Search in Google Scholar
16. Yasmin, S., Nouren, S., Bhatti, H. N., Iqbal, D. N., Iftikhar, S., Majeed, J., Mustafa, R., Nisar, N., Nisar, J., Nazir, A. Green Process. Synth. 2020, 9, 87–96; https://doi.org/10.1515/gps-2020-0010.Search in Google Scholar
17. Almessiere, M. A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A. Results Phys. 2019, 13, 102166; https://doi.org/10.1016/j.rinp.2019.102166.Search in Google Scholar
18. Rahban, M., Divsalar, A., Saboury, A. A., Golestani, A. J. Phys. Chem. C 2010, 114, 5798–5803; https://doi.org/10.1021/jp910656g.Search in Google Scholar
19. Slimani, Y., Almessiere, M. A., Korkmaz, A. D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S. E. Ultrason. Sonochem. 2019, 59, 104757; https://doi.org/10.1016/j.ultsonch.2019.104757.Search in Google Scholar PubMed
20. Naseer, A., Ali, A., Ali, S., Mahmood, A., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Ghaffar, A., Abbas, M., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 9093–9107; https://doi.org/10.1016/j.jmrt.2020.06.013.Search in Google Scholar
21. Jan, N., Sohaib, H., Muhammad Iftikhar, K., Munawar, I., Arif, N., Ahsan, S., Ejaz, A. Int. J. Chem. React. Eng. 2020, 18, 20190123.Search in Google Scholar
22. Doğan, S. Ş., Kocabaş, A. Hum. Exp. Toxicol. 2020, 39, 319–327; https://doi.org/10.1177/0960327119888270.Search in Google Scholar PubMed
23. Iqbal, M., Fatima, M., Javed, T., Anam, A., Nazir, A., Kanwal, Q., Shehzadi, Z., Khan, M. I., Nisar, J., Abbas, M. Mater. Res. Express 2020, 7, 015070; https://doi.org/10.1088/2053-1591/ab692e.Search in Google Scholar
24. Riaz, M., Zia, R., Ijaz, A., Hussain, T., Mohsin, M., Malik, A. Mater. Sci. Eng. C 2018, 90, 308–313; https://doi.org/10.1016/j.msec.2018.04.076.Search in Google Scholar PubMed
25. Sarker, S. D., Nahar, L., Kumarasamy, Y. Methods 2007, 42, 321–324; https://doi.org/10.1016/j.ymeth.2007.01.006.Search in Google Scholar PubMed PubMed Central
26. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Search in Google Scholar
27. Sangeetha, G., Rajeshwari, S., Venckatesh, R. Mater. Res. Bull. 2011, 46, 2560–2566; https://doi.org/10.1016/j.materresbull.2011.07.046.Search in Google Scholar
28. Fu, L., Fu, Z. Ceram. Int. 2015, 41, 2492–2496; https://doi.org/10.1016/j.ceramint.2014.10.069.Search in Google Scholar
29. Thi, T. U. D., Nguyen, T. T., Thi, Y. D., Thi, K. H. T., Phan, B. T., Pham, K. N. RSC Adv. 2020, 10, 23899–23907.10.1039/D0RA04926CSearch in Google Scholar PubMed PubMed Central
30. Soares, A. M. B. F., Gonçalves, L. M. O., Ferreira, R. D. S., de Souza, J. M., Fangueiro, R., Alves, M. M. M., Carvalho, F. A. A., Mendes, A. N., Cantanhêde, W. Carbohydr. Polym. 2020, 243, 116498; https://doi.org/10.1016/j.carbpol.2020.116498.Search in Google Scholar PubMed
31. Ansari, M. A., Murali, M., Prasad, D., Alzohairy, M. A., Almatroudi, A., Alomary, M. N., Udayashankar, A. C., Singh, S. B., Asiri, S. M. M., Ashwini, B. S. Biomolecules 2020, 10, 336; https://doi.org/10.3390/biom10020336.Search in Google Scholar PubMed PubMed Central
32. Shabaani, M., Rahaiee, S., Zare, M., Jafari, S. M. LWT (Lebensm.-Wiss. & Technol.) 2020, 134, 110133; https://doi.org/10.1016/j.lwt.2020.110133.Search in Google Scholar
33. Fardood, S. T., Moradnia, F., Ramazani, A. Micro & Nano Lett. 2019, 14, 986–991.10.1049/mnl.2019.0071Search in Google Scholar
34. Perveen, R., Shujaat, S., Qureshi, Z., Nawaz, S., Khan, M. I., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 7817–7827; https://doi.org/10.1016/j.jmrt.2020.05.004.Search in Google Scholar
35. Rabiee, N., Bagherzadeh, M., Kiani, M., Ghadiri, A. M., Zhang, K., Jin, Z., Ramakrishna, S., Shokouhimehr, M. Nano Express 2020, 1, 020025; https://doi.org/10.1088/2632-959x/abac4d.Search in Google Scholar
36. Sasmaz, A., Sasmaz, B., Hein, J. R. Ore Geol. Rev. 2021, 128, 103910; https://doi.org/10.1016/j.oregeorev.2020.103910.Search in Google Scholar
37. Sasmaz, A., Zagnitko, V. M., Sasmaz, B. Ore Geol. Rev. 2020, 126, 103772; https://doi.org/10.1016/j.oregeorev.2020.103772.Search in Google Scholar
38. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochem. 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Search in Google Scholar
39. Jalal, G., Abbas, N., Deeba, F., Butt, T., Jilal, S., Sarfraz, S. Chem. Int. 2021, 7, 197–207.Search in Google Scholar
40. Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Mabrok, A. Chem. Int. 2021, 7, 79–89.Search in Google Scholar
41. Abbas, N., Butt, M. T., Ahmad, M. M., Deeba, F., Hussain, N. Chem. Int. 2021, 7, 103–111.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers
Articles in the same Issue
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers