Startseite Naturwissenschaften Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods

  • Nouroze Gul , Sadia Ata , Ismat Bibi EMAIL logo , Ijaz-ul-Mohsin , Muhammad Azam , Abubaker Shahid , Norah Alwadai , Nasir Masood und Munawar Iqbal
Veröffentlicht/Copyright: 20. Juni 2022

Abstract

In the present investigation, silver nanoparticles were synthesized and a comparative analysis was performed of modified Turkevich and BRUST methods. Silver nitrate precursor was reduced by trisodium citrate dihydrate and ascorbic acid was used as a surfactant. Based on Turkevich and BRUST methods, the process variables, i.e., temperature, reducing agent concentration, stirring speed, mode of injecting reducing agent/precursor to large excess volume of either precursor/reducing agent were studied. The size of the particles was preliminarily ascertained by DLS studies and it was found that modified BRUST method yielded silver nanoparticles with average particle size of 25 nm, while modified Turkevich method furnished nanoparticles with average particle size of 15 nm. The silver nanoparticles were characterized by employing the UV/visible, Zeta sizer, scanning electron microscopy (SEM) and energy dispersive microscopy (EDX) techniques. Results revealed that the silver nanoparticles size can be controlled by optimizing the conditions of modified Turkevich and BRUST methods.


Corresponding author: Ismat Bibi, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan, E-mail:

Funding source: Princess Nourah bint Abdulrahman University Researchers Supporting Project

Award Identifier / Grant number: PNURSP2022R11

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R11), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R11), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Synthesis of Cu-doped MgO and its enhanced photocatalytic activity for the solar-driven degradation of disperse red F3BS with condition optimization. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Suche in Google Scholar

2. Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref, A., Iqbal, M., Nazir, A. The effect of temperature on the structural, dielectric and magnetic properties of cobalt ferrites synthesized via hydrothermal method. Z. Phys. Chem. 2021, 235, 1279–1296; https://doi.org/10.1515/zpch-2020-1751.Suche in Google Scholar

3. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Green synthesis of metal nanoparticles and their applications in different fields: a review. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Suche in Google Scholar

4. Ghafoor, A., Bibi, I., Ata, S., Majid, F., Kamal, S., Rehman, F., Iqbal, S., Aamir, M., Slimani, Y., Iqbal, M. Synthesis and characterization of magnetically separable La1−xBixCr1−yFeyO3 and photocatalytic activity evaluation under visible light. Z. Phys. Chem. 2021, 235, 1413–1431; https://doi.org/10.1515/zpch-2020-1747.Suche in Google Scholar

5. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Suche in Google Scholar

6. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Structural, dielectric and magnetic studies of perovskite [Gd1−xMxCrO3 (M=La, Co, Bi)] nanoparticles: photocatalytic degradation of dyes. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Suche in Google Scholar

7. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Lead remediation using smart materials. A review. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar

8. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Synthesis and characterization of ZnO nanorods as an adsorbent for Cr (VI) sequestration. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Suche in Google Scholar

9. Aljameel, S. S., Almessiere, M. A., Khan, F. A., Taskhandi, N., Slimani, Y., Al-Saleh, N. S., Manikandan, A., Al-Suhaimi, E. A., Baykal, A. Synthesis, characterization, anti-cancer analysis of Sr0.5Ba0.5DyxSmxFe8−2xO19 (0.00≤x≤1.0) microsphere nanocomposites. Nanomaterials 2021, 11, 700; https://doi.org/10.3390/nano11030700.Suche in Google Scholar PubMed PubMed Central

10. Khan, M., Mehmood, B., Mustafa, G. M., Humaiyoun, K., Alwadai, N., Almuqrin, A. H., Albalawi, H., Iqbal, M. J. C. I. Effect of silver (Ag) ions irradiation on the structural, optical and photovoltaic properties of Mn doped TiO2 thin films based dye sensitized solar cells. Ceram. Int. 2021, 47, 15801–15806; https://doi.org/10.1016/j.ceramint.2021.02.152.Suche in Google Scholar

11. Yasmin, S., Nouren, S., Bhatti, H. N., Iqbal, D. N., Iftikhar, S., Majeed, J., Mustafa, R., Nisar, N., Nisar, J., Nazir, A. Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus. Green Process. Synth. 2020, 9, 87–96; https://doi.org/10.1515/gps-2020-0010.Suche in Google Scholar

12. Ata, S., Shaheen, I., Qurat ul, A., Ghafoor, S., Sultan, M., Majid, F., Bibi, I., Iqbal, M. Graphene and silver decorated ZnO composite synthesis, characterization and photocatalytic activity evaluation. Diam. Relat. Mater. 2018, 90, 26–31; https://doi.org/10.1016/j.diamond.2018.09.015.Suche in Google Scholar

13. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chem. Int. 2020, 6, 42–48.Suche in Google Scholar

14. Remya, V., Abitha, V., Rajput, P., Rane, A., Dutta, A. Silver nanoparticles green synthesis: a mini review. Chem. Int. 2017, 3, 165–171.Suche in Google Scholar

15. Zhang, W. S., Cao, J. T., Dong, Y. X., Wang, H., Ma, S. H., Liu, Y. M. Enhanced chemiluminescence by Au-Ag core-shell nanoparticles: a general and practical biosensing platform for tumor marker detection. J. Lumin. 2018, 201, 163–169; https://doi.org/10.1016/j.jlumin.2018.03.075.Suche in Google Scholar

16. Oh, I.-h., Min, H. S., Li, L., Tran, T. H., Lee, Y.-k., Kwon, I. C., Choi, K., Kim, K., Huh, K. M. Cancer cell-specific photoactivity of pheophorbide a–glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials 2013, 34, 6454–6463; https://doi.org/10.1016/j.biomaterials.2013.05.017.Suche in Google Scholar PubMed

17. Hoshyar, N., Gray, S., Han, H., Bao, G. J. N. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692; https://doi.org/10.2217/nnm.16.5.Suche in Google Scholar PubMed PubMed Central

18. Scott, R. P., Quaggin, S. E. The cell biology of renal filtration. JCB (J. Cell Biol.) 2015, 209, 199–210; https://doi.org/10.1083/jcb.201410017.Suche in Google Scholar PubMed PubMed Central

19. Longmire, M., Choyke, P. L., Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008, 3, 1–7; https://doi.org/10.2217/17435889.3.5.703.Suche in Google Scholar PubMed PubMed Central

20. Zhou, Y., Dai, Z. New strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem. Asian J. 2018, 3, 3333–3340; https://doi.org/10.1002/asia.201800149.Suche in Google Scholar PubMed

21. Chaloupka, K., Malam, Y., Seifalian, A. M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588; https://doi.org/10.1016/j.tibtech.2010.07.006.Suche in Google Scholar PubMed

22. Gliga, A. R., Skoglund, S., Wallinder, I. O., Fadeel, B., Karlsson, H. L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014, 11, 1–17; https://doi.org/10.1186/1743-8977-11-11.Suche in Google Scholar PubMed PubMed Central

23. Liu, D., Yu, S., Zhu, Z., Lyu, C., Bai, C., Ge, H., Yang, X., Pan, W. Controlled delivery of carvedilol nanosuspension from osmotic pump capsule: in vitro and in vivo evaluation. Int. J. Pharm. 2014, 475, 496–503; https://doi.org/10.1016/j.ijpharm.2014.09.008.Suche in Google Scholar PubMed

24. Muhamad12, I. I., Selvakumaran, S., Lazim, N. A. M. Designing polymeric nanoparticles for targeted drug delivery system. Nanomedicine 2014, 287, 287.Suche in Google Scholar

25. Muhammad, Z., Raza, A., Ghafoor, S., Naeem, A., Naz, S. S., Riaz, S., Ahmed, W., Rana, N. F. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur. J. Pharmaceut. Sci. 2016, 91, 251–255; https://doi.org/10.1016/j.ejps.2016.04.029.Suche in Google Scholar PubMed

26. Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.-S., Chen, G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601; https://doi.org/10.1016/j.drudis.2014.11.014.Suche in Google Scholar PubMed PubMed Central

27. Almessiere, M., Slimani, Y., Algarou, N., Gondal, M., Wudil, Y., Younas, M., Auwal, I., Baykal, A., Manikandan, A., Zubar, T. Electronic, magnetic, and microwave properties of hard/soft nanocomposites based on hexaferrite SrNi0.02Zr0.02Fe11.96O19 with variable spinel phase MFe2O4 (M=Mn, Co, Cu, and Zn). Ceram. Int. 2021, 47, 35209–35223; https://doi.org/10.1016/j.ceramint.2021.09.064.Suche in Google Scholar

28. Almessiere, M. A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A. Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results Phys. 2019, 13, 102166; https://doi.org/10.1016/j.rinp.2019.102166.Suche in Google Scholar

29. Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., El Sayed, H. S., Almessiere, M. A., Sözeri, H., Shirsath, S. E., Ercan, I., Baykal, A. Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 2018, 44, 14242–14250; https://doi.org/10.1016/j.ceramint.2018.05.028.Suche in Google Scholar

30. Slimani, Y., Baykal, A., Manikandan, A. Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J. Magn. Magn Mater. 2018, 458, 204–212; https://doi.org/10.1016/j.jmmm.2018.03.025.Suche in Google Scholar

31. Ali, F., Hamza, M., Iqbal, M., Basha, B., Alwadai, N., Nazir, A. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review. Z. Phys. Chem. 2021, 236, 291–326; https://doi.org/10.1515/zpch-2021-3084.Suche in Google Scholar

32. Dong, X., Ji, X., Wu, H., Zhao, L., Li, J., Yang, W. Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem. C 2009, 113, 6573–6576; https://doi.org/10.1021/jp900775b.Suche in Google Scholar

33. Zhang, X.-F., Liu, Z.-G., Shen, W., Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534; https://doi.org/10.3390/ijms17091534.Suche in Google Scholar PubMed PubMed Central

34. Das, R., Nath, S., Chakdar, D., Gope, G., Bhattacharjee, R. Preparation of silver nanoparticles and their characterization. J. Nanotechnol. 2009, 5, 1–6.10.1080/17458080903583915Suche in Google Scholar

35. Taleb, A., Petit, C., Pileni, M. P. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J. Phys. Chem. B 1998, 102, 2214–2220; https://doi.org/10.1021/jp972807s.Suche in Google Scholar

36. Link, S., El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366; https://doi.org/10.1146/annurev.physchem.54.011002.103759.Suche in Google Scholar PubMed

37. He, R., Qian, X., Yin, J., Zhu, Z. Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 2002, 12, 3783–3786; https://doi.org/10.1039/b205214h.Suche in Google Scholar

38. Park, J., Cha, S.-H., Cho, S., Park, Y. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction. J. Nanoparticle Res. 2016, 18, 1–13; https://doi.org/10.1007/s11051-016-3466-2.Suche in Google Scholar

39. Phongtongpasuk, S., Poadang, S., Yongvanich, N. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Proc. 2016, 89, 239–247; https://doi.org/10.1016/j.egypro.2016.05.031.Suche in Google Scholar

40. Mandal, A., Meda, V., Zhang, W., Farhan, K., Gnanamani, A. Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surf. B Biointerfaces 2012, 90, 191–196; https://doi.org/10.1016/j.colsurfb.2011.10.021.Suche in Google Scholar PubMed

41. Ban, D. K., Paul, S. Protein corona over silver nanoparticles triggers conformational change of proteins and drop in bactericidal potential of nanoparticles: polyethylene glycol capping as preventive strategy. Colloids Surf. B Biointerfaces 2016, 146, 577–584; https://doi.org/10.1016/j.colsurfb.2016.06.050.Suche in Google Scholar PubMed

42. Manno, D., Filippo, E., Di Giulio, M., Serra, A. Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J. Non-Cryst. Solids 2008, 354, 5515–5520; https://doi.org/10.1016/j.jnoncrysol.2008.04.059.Suche in Google Scholar

43. Šileikaitė, A., Prosyčevas, I., Puišo, J., Juraitis, A., Guobienė, A. Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater. Sci. 2006, 12, 1392–1320.Suche in Google Scholar

44. Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Shandiz, S. A. S., Ahmadi, F., Batooli, H. Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat. Prod. Res. 2014, 28, 1964–1969; https://doi.org/10.1080/14786419.2014.918124.Suche in Google Scholar PubMed

45. Hudlikar, M., Joglekar, S., Dhaygude, M., Kodam, K. Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater. Lett. 2012, 75, 196–199; https://doi.org/10.1016/j.matlet.2012.02.018.Suche in Google Scholar

46. Dankovich, T. A., Gray, D. G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 2011, 45, 1992–1998; https://doi.org/10.1021/es103302t.Suche in Google Scholar PubMed

47. Fedlheim, D. L., Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications; CRC Press: Boca Raton, USA, 2001; pp. 1–237.10.1201/9780367800475Suche in Google Scholar

48. Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W., Grobelny, J. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 2013, 313081; https://doi.org/10.1155/2013/313081.Suche in Google Scholar

49. Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008, 101, 239–253; https://doi.org/10.1093/toxsci/kfm240.Suche in Google Scholar PubMed

50. Sasmaz, M., Senel, G. U., Obek, E. Boron bioaccumulation by the dominant macrophytes grown in various discharge water environments. Bull. Environ. Contam. Toxicol. 2021, 106, 1050–1058; https://doi.org/10.1007/s00128-021-03222-7.Suche in Google Scholar PubMed

51. Sasmaz, M., Senel, G. U., Obek, E. Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environ. Geochem. Health 2020, 43, 1–14; https://doi.org/10.1007/s10653-020-00629-9.Suche in Google Scholar PubMed

52. Sasmaz, B., Sasmaz, A., Hein, J. R. Geochemical approach to the genesis of the Oligocene-stratiform manganese-oxide deposit, Chiatura (Georgia). Ore Geol. Rev. 2021, 128, 103910; https://doi.org/10.1016/j.oregeorev.2020.103910.Suche in Google Scholar

53. Sasmaz, A., Zagnitko, V. M., Sasmaz, B. Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxide-hydroxide deposits in the Nikopol, Ukraine. Ore Geol. Rev. 2020, 126, 103772; https://doi.org/10.1016/j.oregeorev.2020.103772.Suche in Google Scholar

54. Sasmaz, A., Ozkan, S., Gursu, M. F., Sasmaz, M. The hematological and biochemical changes in rats exposed to britholite mineral. Appl. Radiat. Isot. 2017, 129, 185–188; https://doi.org/10.1016/j.apradiso.2017.07.060.Suche in Google Scholar PubMed

55. Shammout, M. W., Awwad, A. M. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem. Int. 2021, 7, 71–78.Suche in Google Scholar

56. Amer, M. W., Awwad, A. M. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem. Int. 2021, 7, 1–8.Suche in Google Scholar

57. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and nematicidal activity against Meloidogyne javanica. Chem. Int. 2020, 6, 137–143.Suche in Google Scholar

Received: 2022-01-13
Accepted: 2022-05-20
Published Online: 2022-06-20
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0009/pdf
Button zum nach oben scrollen