Synthesis, spectral characterizations, molecular geometries and electronic properties of phenothiazine based organic dyes for dye-sensitized solar cells
-
Saravanakumaran TamilSelvan
, Annamalai Prakasam
, Ganesan Venkatesh , Chennappan Kamal , Yohannan Sheena Mary , Sharfudeen Parveen Banu , Palanisamy Vennila und Yohannan Shyma Mary
Abstract
A number of organic dye compounds is developed and used as dye-sensitized solar cells in order to produce cost-effective devices and enhance cell performance. In this aspect, phenothiazine based organic dye compounds such as (E)-3-(7-bromo-10-phenyl-10H-phenothiazine-3-yl) acrylic acid and (E)-3-(7-bromo-10-phenyl-10H-phenothiazine-3-yl)-2-cyanoacrylic acid have been synthesized. The synthesized dye compounds have been characterized through Fourier-transform infrared, Fourier-transform Raman and nuclear magnetic resonance spectroscopic method. The Ultraviolet–Visible spectra were recorded and electronic features were discussed with the theoretically calculated bands using time-dependent density functional theory. Frontier molecular orbital, natural bond orbital and non-linear optical properties have been calculated for these compounds using density functional theory. The photosensitization properties such as light harvesting efficiency and electron injection driving force (∆G inject) have also been discussed.
Acknowledgements
This research did not receive any specific funding.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest.
References
1. Hagfeldt, G. B., Sun, L., Kloo, L., Pettersson, H. Chem. Rev. 2010, 110, 6595; https://doi.org/10.1021/cr900356p.Suche in Google Scholar
2. Justin Thomas, K. R., Lin, J. T., Tao, Y., Ko, C. J. Am. Chem. Soc. 2001, 123, 9404; https://doi.org/10.1021/ja010819s.Suche in Google Scholar
3. Abraham Onoabedje, E., Chinwe Chinwuko, O., Ebere Ezema, B., Amarachukwu Ezeokonkwo, M. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 437; https://doi.org/10.1080/10426507.2018.1436545.Suche in Google Scholar
4. Martínez de Baroja, N., Garín, J., Orduna, J., Andreu, R., Blesa, M. J., Villacampa, B., Alicante, R., Franco, S. J. Org. Chem. 2012, 77, 4634; https://doi.org/10.1021/jo300373m.Suche in Google Scholar
5. Castro, M. C. A., Belsley, M., Raposo, M. M. M. Dyes Pigm. 2016, 133, 333; https://doi.org/10.1016/j.dyepig.2016.04.027.Suche in Google Scholar
6. Hart, A. S., Chandra Bikram, K. C, Subbaiyan, N. K., Karr, P. A., D’Souza, F. ACS Appl. Mater. Interfaces 2012, 4, 5813; https://doi.org/10.1021/am3014407.Suche in Google Scholar
7. Tian, H., Yang, X., Chen, R., Pan, Y., Li, L., Hagfeldt, A., Sun, L. Chem. Commun. 2007, 36, 3741; https://doi.org/10.1039/b707485a.Suche in Google Scholar
8. Sun, D., Rosokha, S. V., Kochi, J. K. J. Am. Chem. Soc. 2004, 126, 1388; https://doi.org/10.1021/ja038746v.Suche in Google Scholar
9. Chang, Y., Chou, P., Lin, Y., Watanabe, M., Yang, C., Chin, T., Chow, T. J. J. Mater. Chem. 2012, 22, 21704; https://doi.org/10.1039/c2jm35556f.Suche in Google Scholar
10. Zhu, Y., Babel, A., Jenekhe, S. A. Macromolecules 2005, 38, 7983; https://doi.org/10.1021/ma0510993.Suche in Google Scholar
11. Kramer, C. S., Zeitler, K., Muller, T. J. J. Tetrahedron Lett. 2001, 42, 8619; https://doi.org/10.1016/s0040-4039(01)01848-2.Suche in Google Scholar
12. Ahmed, H., Zhou, T., Han, W., Xue, T., Wang, T. RSC Adv. 2017, 7, 55382.10.1039/C7RA11887BSuche in Google Scholar
13. Cao, D., Peng, J., Hong, Y., Fang, X., Wang, L., Meier, H. Org. Lett. 2011, 12, 1610; https://doi.org/10.1021/ol2000167.Suche in Google Scholar
14. Hsissou, R., Benhiba, F., Abbout, S., Dagdag, O., Benkhaya, S., Berisha, A., Erramli, H., Elharfi, A. Inorg. Chem. Commun. 2020, 115, 107858, https://doi.org/10.1016/j.inoche.2020.107858.Suche in Google Scholar
15. Benkhaya, S., M’rabet, S., Hsissou, R., El Harfi, A. J. Mater. Res. Technol. 2020, 9, 4763.10.1016/j.jmrt.2020.02.102Suche in Google Scholar
16. AL-Temimei, F. A., Adel, H. Omran Alkhayatt Optik. 2020, 208, 163920; https://doi.org/10.1016/j.ijleo.2019.163920.Suche in Google Scholar
17. Gladis Anitha, E., Joseph Vedhagiri, S., Parimala, K. Spectrochim. Acta, Part A 2015, 140, 544; https://doi.org/10.1016/j.saa.2014.12.017.Suche in Google Scholar
18. Irfan, A., Pannipara, M., Al-Sehemi, A. G., Waseem Mumtaz, M., Assiri, M. A., Rasool Chaudhry, A., Muhammad, S. Z. Phys. Chem. 2019, 233, https://doi.org/10.1515/zpch-2018-1166.Suche in Google Scholar
19. Prakasam, M. Z. Phys. Chem. 2018, 233, https://doi.org/10.1515/zpch-2018-1314.Suche in Google Scholar
20. Hosseinnezhad, M., Moradian, S., Gharanjig, K., Afshar Taromi, F. Mater. Technol. 2014, 29, 112; https://doi.org/10.1179/1753555713y.0000000107.Suche in Google Scholar
21. Tirado-Rives, J., Jorgensen, W. L. J. Chem. Theor. Comput. 2008, 4, 297–306; https://doi.org/10.1021/ct700248k.Suche in Google Scholar
22. Jain, Y. S., Persson, K. A. Nat. Rev. Mater. 2016, 1, 15004; https://doi.org/10.1038/natrevmats.2015.4.Suche in Google Scholar
23. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A.Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Asegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Ioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D. J., Keith, T., AlLaham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. Gaussian 03, Revision E.01; Gaussian Inc.: Pittsburgh. B.A., 2000.Suche in Google Scholar
24. Jamroz, M. H. Vibrational Energy Distribution Analysis VEDA 4: Warsaw, 2004.Suche in Google Scholar
25. Reed, A. E., Curtiss, L. A., Weinhold, F. Chem. Rev. 1988, 88, 899–926, https://doi.org/10.1021/cr00088a005.Suche in Google Scholar
26. Glendening, E. D., Reed, A. E., Carpenter, J. E., Weinhold, F. NBO Version 3.1, TCI; University of Wisconsin: Madison, 1998.Suche in Google Scholar
27. Politzer, P., Murray, J. S. Theor. Chem. Acc. 2002, 108, 134–142; https://doi.org/10.1007/s00214-002-0363-9.Suche in Google Scholar
28. Muthukkumar, M., Bhuvaneswari, T., Venkatesh, G., Kamal, C., Vennila, P., Armaković, S., Armaković, S. J., Sheena Mary, Y., Yohannan Panicker, C. J. Mol. Liq. 2018, 272, 481; https://doi.org/10.1016/j.molliq.2018.09.123.Suche in Google Scholar
29. Kacimi, R., Bourass, M., Toupance, T., Wazzan, N., Chemek, M., El Alamy, A., Bejjit, L., Alimi, K., Bouachrine, M. Res. Chem. Intermed. 2020, 46, 3247; https://doi.org/10.1007/s11164-020-04150-7.Suche in Google Scholar
30. Pooventhiran, T., Bhattacharyya, U., Rao, D. J., Chandramohan, V., Karunakar, P., Ahmad, I., Sheena Mary, Y., Thomas, R. Struct. Chem. 2020, https://doi.org/10.1007/s11224-020-01607-8.Suche in Google Scholar
31. Al-Zahrani, F. A., Arshad, M. N., Asiri, A. M. Chem. Cent. J. 2016, 10, 1894; https://doi.org/10.1186/s13065-016-0158-z.Suche in Google Scholar
32. Socrates, G. IR Characteristic Group Frequencies; John Wiley & Sons: New York, 1981.Suche in Google Scholar
33. Venkatesh, G., Govindaraju, M., Vennila, P., Kamal, C. J. Theor. Comput. Chem. 2015, 15, 1650007.10.1142/S0219633616500073Suche in Google Scholar
34. Colthup, N. B., Daly, I. H., Wjberley, S. H. Introduction to Infrared and Raman Spectroscopy; Academic Press: New York, 1990; p. 1155.Suche in Google Scholar
35. Venkatesh, G., Kamal, C., Vennila, P., Govindaraju, M., Sheena Mary, Y., Armakovic, S., Armakovic, S. J., Kaya, S., Yohannan Panicker, C. J. Mol. Struct. 2018, 1171, 253; https://doi.org/10.1016/j.molstruc.2018.06.001.Suche in Google Scholar
36. Cao, P., Yao, J., Ren, B., Gu, R., Tian, Z. J. Phys. Chem. B 2002, 106, 10150; https://doi.org/10.1021/jp0257395.Suche in Google Scholar
37. Ditchfield, R. J. Chem. Phys. 1972, 56, 5688; https://doi.org/10.1063/1.1677088.Suche in Google Scholar
38. Kalinowski, H. O., Berger, S., Brawn, S. 13C-NMR Spectroscopy; John Wiley & Sons: Chichester, 1988.Suche in Google Scholar
39. Curutchet, C., Mennucci, B. Chem. Rev. 2016, 1172, 294; https://doi.org/10.1021/acs.chemrev.5b00700.Suche in Google Scholar
40. Thadathil, D. A., Varghese, S., Akshaya, K. B., Thomas, R., Varghese, A. J. Fluoresc. 2019, 29, 1013; https://doi.org/10.1007/s10895-019-02415-y.Suche in Google Scholar
41. Boschloo, G., Hagfeldt, A. J. Phys. Chem. B 2005, 109, 12093; https://doi.org/10.1021/jp0513770.Suche in Google Scholar
42. Patil, D. S., Avhad, K. C., Sekar, N. Comput. Theor. Chem. 2018, 1138, 75; https://doi.org/10.1016/j.comptc.2018.06.006.Suche in Google Scholar
43. Nattestad, A., Mozer, A. J., Fischer, M. K. R., Cheng, Y. B., Mishra, A., Bäuerle, P., Bach, U. Nat. Mater. 2010, 9, 31; https://doi.org/10.1038/nmat2588.Suche in Google Scholar
44. Lazrak, M., Hamid, T., Mohamed Bouzzine, S., Lamchouri, F. Res. Chem. Intermed. 2020, 46, 3961; https://doi.org/10.1007/s11164-020-04184-x.Suche in Google Scholar
45. Koopmans, T. Physica 1933, 1, 104.10.1016/S0031-8914(34)90011-2Suche in Google Scholar
46. Parr, R. G., Szentpaly, L. V., Liu, S. J. Am. Chem. Soc. 1999, 121, 1922; https://doi.org/10.1021/ja983494x.Suche in Google Scholar
47. Pearson, R. G. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 8440.10.1073/pnas.83.22.8440Suche in Google Scholar PubMed PubMed Central
48. Hsissou, R., Benhiba, F., Dagdag, O., Bouchti, M., Nouneh, K., Assouag, M., Briche, S., Zarrouk, A., Elharfi, A. J. Colloid Interface Sci. 2020, 574, 43; https://doi.org/10.1016/j.jcis.2020.04.022.Suche in Google Scholar
49. Hsissou, R., Benhiba, F., Khudhair, M., Berradi, M., Mahsoune, A., Oudda, H., El Harfi, A., Obot, I. B., Zarrouk, A. J. King Saud Univ. Sci. 2020, 32, 667; https://doi.org/10.1016/j.jksus.2018.10.008.Suche in Google Scholar
50. Hsissou, R., Abbout, S., Seghiri, R., Rehioui, M., Berisha, A., Erramli, H., Assouag, M., Elharfi, A. J. Mater. Res. Technol. 2020, 9, https://doi.org/10.1016/j.jmrt.2020.01.002.Suche in Google Scholar
51. Abad, N., Hajji, M., Ramli, Y., Belkhiria, M., Elmgirhi, S. M. H., Habib, M. A., Guerfel, T., Mague, J.T., Essassi, E. M. J. Phys. Org. Chem. 2020, https://doi.org/10.1002/poc.4055.Suche in Google Scholar
52. Venkatesh, G., Kamal, C., Venila, P., Govin daraju, M., Sheena Mary, Y., Armaković, S., Armaković, S. J., Kaya, S., Yohannan Panicker, C. J. Mol. Struct. 2018, 253, https://doi.org/10.1016/j.molstruc.2018.06.001.Suche in Google Scholar
53. Hajji, M., Mtiraoui, H., Amiri, N., Msaddek, M., Guerfel, T. Int. J. Quant. Chem. 2019, 119, https://doi.org/10.1002/qua.26000.Suche in Google Scholar
54. Venkatesh, G., Govindaraju, M., Kamal, C., Vennila, P., Kaya, S. RSC Adv. 2017, 7, 1401; https://doi.org/10.1039/c6ra25535c.Suche in Google Scholar
55. Vennila, P., Govidaraju, M., Venkatesh, G., Kamal, C. J. Mol. Struct. 2016, 111, 151; https://doi.org/10.1016/j.molstruc.2016.01.068.Suche in Google Scholar
56. Paterson, M. J., Christiansen, O., Pawłowski, F., Jørgensen, P., Hättig, C., Helgaker, T., Sałek, P. J. Chem. Phys. 2006, 124, 054322; https://doi.org/10.1063/1.2163874.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2020-1732).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior
- Physicochemical and instrumental characterization of rice husk and its potential use as a low cost adsorbent for mutagenic dye bromophenol blue
- The effect of temperature on the structural, dielectric and magnetic properties of cobalt ferrites synthesized via hydrothermal method
- Synergetic metronidazole removal from aqueous solutions using combination of electro-persulfate process with magnetic Fe3O4@AC nanocomposites: nonlinear fitting of isotherms and kinetic models
- Effective removal of tetracycline from water by batch method using activated carbon, magnetic carbon nanocomposite, and membrane hybrid technology
- Synthesis, spectral characterizations, molecular geometries and electronic properties of phenothiazine based organic dyes for dye-sensitized solar cells
- Original Papers
- Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior
- Physicochemical and instrumental characterization of rice husk and its potential use as a low cost adsorbent for mutagenic dye bromophenol blue
- The effect of temperature on the structural, dielectric and magnetic properties of cobalt ferrites synthesized via hydrothermal method
- Synergetic metronidazole removal from aqueous solutions using combination of electro-persulfate process with magnetic Fe3O4@AC nanocomposites: nonlinear fitting of isotherms and kinetic models
- Effective removal of tetracycline from water by batch method using activated carbon, magnetic carbon nanocomposite, and membrane hybrid technology
- Synthesis, spectral characterizations, molecular geometries and electronic properties of phenothiazine based organic dyes for dye-sensitized solar cells
- Original Papers
- Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment