Startseite Synthesis, spectral characterizations, molecular geometries and electronic properties of phenothiazine based organic dyes for dye-sensitized solar cells
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, spectral characterizations, molecular geometries and electronic properties of phenothiazine based organic dyes for dye-sensitized solar cells

  • Saravanakumaran TamilSelvan EMAIL logo , Annamalai Prakasam , Ganesan Venkatesh , Chennappan Kamal , Yohannan Sheena Mary , Sharfudeen Parveen Banu , Palanisamy Vennila und Yohannan Shyma Mary
Veröffentlicht/Copyright: 26. November 2020

Abstract

A number of organic dye compounds is developed and used as dye-sensitized solar cells in order to produce cost-effective devices and enhance cell performance. In this aspect, phenothiazine based organic dye compounds such as (E)-3-(7-bromo-10-phenyl-10H-phenothiazine-3-yl) acrylic acid and (E)-3-(7-bromo-10-phenyl-10H-phenothiazine-3-yl)-2-cyanoacrylic acid have been synthesized. The synthesized dye compounds have been characterized through Fourier-transform infrared, Fourier-transform Raman and nuclear magnetic resonance spectroscopic method. The Ultraviolet–Visible spectra were recorded and electronic features were discussed with the theoretically calculated bands using time-dependent density functional theory. Frontier molecular orbital, natural bond orbital and non-linear optical properties have been calculated for these compounds using density functional theory. The photosensitization properties such as light harvesting efficiency and electron injection driving force (∆G inject) have also been discussed.


Corresponding author: Saravanakumaran TamilSelvan, Department of Physics, Thiruvalluvar Government Arts College, Rasipuram 638052, India, E-mail:

Acknowledgements

This research did not receive any specific funding.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

1. Hagfeldt, G. B., Sun, L., Kloo, L., Pettersson, H. Chem. Rev. 2010, 110, 6595; https://doi.org/10.1021/cr900356p.Suche in Google Scholar

2. Justin Thomas, K. R., Lin, J. T., Tao, Y., Ko, C. J. Am. Chem. Soc. 2001, 123, 9404; https://doi.org/10.1021/ja010819s.Suche in Google Scholar

3. Abraham Onoabedje, E., Chinwe Chinwuko, O., Ebere Ezema, B., Amarachukwu Ezeokonkwo, M. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 437; https://doi.org/10.1080/10426507.2018.1436545.Suche in Google Scholar

4. Martínez de Baroja, N., Garín, J., Orduna, J., Andreu, R., Blesa, M. J., Villacampa, B., Alicante, R., Franco, S. J. Org. Chem. 2012, 77, 4634; https://doi.org/10.1021/jo300373m.Suche in Google Scholar

5. Castro, M. C. A., Belsley, M., Raposo, M. M. M. Dyes Pigm. 2016, 133, 333; https://doi.org/10.1016/j.dyepig.2016.04.027.Suche in Google Scholar

6. Hart, A. S., Chandra Bikram, K. C, Subbaiyan, N. K., Karr, P. A., D’Souza, F. ACS Appl. Mater. Interfaces 2012, 4, 5813; https://doi.org/10.1021/am3014407.Suche in Google Scholar

7. Tian, H., Yang, X., Chen, R., Pan, Y., Li, L., Hagfeldt, A., Sun, L. Chem. Commun. 2007, 36, 3741; https://doi.org/10.1039/b707485a.Suche in Google Scholar

8. Sun, D., Rosokha, S. V., Kochi, J. K. J. Am. Chem. Soc. 2004, 126, 1388; https://doi.org/10.1021/ja038746v.Suche in Google Scholar

9. Chang, Y., Chou, P., Lin, Y., Watanabe, M., Yang, C., Chin, T., Chow, T. J. J. Mater. Chem. 2012, 22, 21704; https://doi.org/10.1039/c2jm35556f.Suche in Google Scholar

10. Zhu, Y., Babel, A., Jenekhe, S. A. Macromolecules 2005, 38, 7983; https://doi.org/10.1021/ma0510993.Suche in Google Scholar

11. Kramer, C. S., Zeitler, K., Muller, T. J. J. Tetrahedron Lett. 2001, 42, 8619; https://doi.org/10.1016/s0040-4039(01)01848-2.Suche in Google Scholar

12. Ahmed, H., Zhou, T., Han, W., Xue, T., Wang, T. RSC Adv. 2017, 7, 55382.10.1039/C7RA11887BSuche in Google Scholar

13. Cao, D., Peng, J., Hong, Y., Fang, X., Wang, L., Meier, H. Org. Lett. 2011, 12, 1610; https://doi.org/10.1021/ol2000167.Suche in Google Scholar

14. Hsissou, R., Benhiba, F., Abbout, S., Dagdag, O., Benkhaya, S., Berisha, A., Erramli, H., Elharfi, A. Inorg. Chem. Commun. 2020, 115, 107858, https://doi.org/10.1016/j.inoche.2020.107858.Suche in Google Scholar

15. Benkhaya, S., M’rabet, S., Hsissou, R., El Harfi, A. J. Mater. Res. Technol. 2020, 9, 4763.10.1016/j.jmrt.2020.02.102Suche in Google Scholar

16. AL-Temimei, F. A., Adel, H. Omran Alkhayatt Optik. 2020, 208, 163920; https://doi.org/10.1016/j.ijleo.2019.163920.Suche in Google Scholar

17. Gladis Anitha, E., Joseph Vedhagiri, S., Parimala, K. Spectrochim. Acta, Part A 2015, 140, 544; https://doi.org/10.1016/j.saa.2014.12.017.Suche in Google Scholar

18. Irfan, A., Pannipara, M., Al-Sehemi, A. G., Waseem Mumtaz, M., Assiri, M. A., Rasool Chaudhry, A., Muhammad, S. Z. Phys. Chem. 2019, 233, https://doi.org/10.1515/zpch-2018-1166.Suche in Google Scholar

19. Prakasam, M. Z. Phys. Chem. 2018, 233, https://doi.org/10.1515/zpch-2018-1314.Suche in Google Scholar

20. Hosseinnezhad, M., Moradian, S., Gharanjig, K., Afshar Taromi, F. Mater. Technol. 2014, 29, 112; https://doi.org/10.1179/1753555713y.0000000107.Suche in Google Scholar

21. Tirado-Rives, J., Jorgensen, W. L. J. Chem. Theor. Comput. 2008, 4, 297–306; https://doi.org/10.1021/ct700248k.Suche in Google Scholar

22. Jain, Y. S., Persson, K. A. Nat. Rev. Mater. 2016, 1, 15004; https://doi.org/10.1038/natrevmats.2015.4.Suche in Google Scholar

23. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A.Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Asegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Ioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D. J., Keith, T., AlLaham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. Gaussian 03, Revision E.01; Gaussian Inc.: Pittsburgh. B.A., 2000.Suche in Google Scholar

24. Jamroz, M. H. Vibrational Energy Distribution Analysis VEDA 4: Warsaw, 2004.Suche in Google Scholar

25. Reed, A. E., Curtiss, L. A., Weinhold, F. Chem. Rev. 1988, 88, 899–926, https://doi.org/10.1021/cr00088a005.Suche in Google Scholar

26. Glendening, E. D., Reed, A. E., Carpenter, J. E., Weinhold, F. NBO Version 3.1, TCI; University of Wisconsin: Madison, 1998.Suche in Google Scholar

27. Politzer, P., Murray, J. S. Theor. Chem. Acc. 2002, 108, 134–142; https://doi.org/10.1007/s00214-002-0363-9.Suche in Google Scholar

28. Muthukkumar, M., Bhuvaneswari, T., Venkatesh, G., Kamal, C., Vennila, P., Armaković, S., Armaković, S. J., Sheena Mary, Y., Yohannan Panicker, C. J. Mol. Liq. 2018, 272, 481; https://doi.org/10.1016/j.molliq.2018.09.123.Suche in Google Scholar

29. Kacimi, R., Bourass, M., Toupance, T., Wazzan, N., Chemek, M., El Alamy, A., Bejjit, L., Alimi, K., Bouachrine, M. Res. Chem. Intermed. 2020, 46, 3247; https://doi.org/10.1007/s11164-020-04150-7.Suche in Google Scholar

30. Pooventhiran, T., Bhattacharyya, U., Rao, D. J., Chandramohan, V., Karunakar, P., Ahmad, I., Sheena Mary, Y., Thomas, R. Struct. Chem. 2020, https://doi.org/10.1007/s11224-020-01607-8.Suche in Google Scholar

31. Al-Zahrani, F. A., Arshad, M. N., Asiri, A. M. Chem. Cent. J. 2016, 10, 1894; https://doi.org/10.1186/s13065-016-0158-z.Suche in Google Scholar

32. Socrates, G. IR Characteristic Group Frequencies; John Wiley & Sons: New York, 1981.Suche in Google Scholar

33. Venkatesh, G., Govindaraju, M., Vennila, P., Kamal, C. J. Theor. Comput. Chem. 2015, 15, 1650007.10.1142/S0219633616500073Suche in Google Scholar

34. Colthup, N. B., Daly, I. H., Wjberley, S. H. Introduction to Infrared and Raman Spectroscopy; Academic Press: New York, 1990; p. 1155.Suche in Google Scholar

35. Venkatesh, G., Kamal, C., Vennila, P., Govindaraju, M., Sheena Mary, Y., Armakovic, S., Armakovic, S. J., Kaya, S., Yohannan Panicker, C. J. Mol. Struct. 2018, 1171, 253; https://doi.org/10.1016/j.molstruc.2018.06.001.Suche in Google Scholar

36. Cao, P., Yao, J., Ren, B., Gu, R., Tian, Z. J. Phys. Chem. B 2002, 106, 10150; https://doi.org/10.1021/jp0257395.Suche in Google Scholar

37. Ditchfield, R. J. Chem. Phys. 1972, 56, 5688; https://doi.org/10.1063/1.1677088.Suche in Google Scholar

38. Kalinowski, H. O., Berger, S., Brawn, S. 13C-NMR Spectroscopy; John Wiley & Sons: Chichester, 1988.Suche in Google Scholar

39. Curutchet, C., Mennucci, B. Chem. Rev. 2016, 1172, 294; https://doi.org/10.1021/acs.chemrev.5b00700.Suche in Google Scholar

40. Thadathil, D. A., Varghese, S., Akshaya, K. B., Thomas, R., Varghese, A. J. Fluoresc. 2019, 29, 1013; https://doi.org/10.1007/s10895-019-02415-y.Suche in Google Scholar

41. Boschloo, G., Hagfeldt, A. J. Phys. Chem. B 2005, 109, 12093; https://doi.org/10.1021/jp0513770.Suche in Google Scholar

42. Patil, D. S., Avhad, K. C., Sekar, N. Comput. Theor. Chem. 2018, 1138, 75; https://doi.org/10.1016/j.comptc.2018.06.006.Suche in Google Scholar

43. Nattestad, A., Mozer, A. J., Fischer, M. K. R., Cheng, Y. B., Mishra, A., Bäuerle, P., Bach, U. Nat. Mater. 2010, 9, 31; https://doi.org/10.1038/nmat2588.Suche in Google Scholar

44. Lazrak, M., Hamid, T., Mohamed Bouzzine, S., Lamchouri, F. Res. Chem. Intermed. 2020, 46, 3961; https://doi.org/10.1007/s11164-020-04184-x.Suche in Google Scholar

45. Koopmans, T. Physica 1933, 1, 104.10.1016/S0031-8914(34)90011-2Suche in Google Scholar

46. Parr, R. G., Szentpaly, L. V., Liu, S. J. Am. Chem. Soc. 1999, 121, 1922; https://doi.org/10.1021/ja983494x.Suche in Google Scholar

47. Pearson, R. G. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 8440.10.1073/pnas.83.22.8440Suche in Google Scholar PubMed PubMed Central

48. Hsissou, R., Benhiba, F., Dagdag, O., Bouchti, M., Nouneh, K., Assouag, M., Briche, S., Zarrouk, A., Elharfi, A. J. Colloid Interface Sci. 2020, 574, 43; https://doi.org/10.1016/j.jcis.2020.04.022.Suche in Google Scholar

49. Hsissou, R., Benhiba, F., Khudhair, M., Berradi, M., Mahsoune, A., Oudda, H., El Harfi, A., Obot, I. B., Zarrouk, A. J. King Saud Univ. Sci. 2020, 32, 667; https://doi.org/10.1016/j.jksus.2018.10.008.Suche in Google Scholar

50. Hsissou, R., Abbout, S., Seghiri, R., Rehioui, M., Berisha, A., Erramli, H., Assouag, M., Elharfi, A. J. Mater. Res. Technol. 2020, 9, https://doi.org/10.1016/j.jmrt.2020.01.002.Suche in Google Scholar

51. Abad, N., Hajji, M., Ramli, Y., Belkhiria, M., Elmgirhi, S. M. H., Habib, M. A., Guerfel, T., Mague, J.T., Essassi, E. M. J. Phys. Org. Chem. 2020, https://doi.org/10.1002/poc.4055.Suche in Google Scholar

52. Venkatesh, G., Kamal, C., Venila, P., Govin daraju, M., Sheena Mary, Y., Armaković, S., Armaković, S. J., Kaya, S., Yohannan Panicker, C. J. Mol. Struct. 2018, 253, https://doi.org/10.1016/j.molstruc.2018.06.001.Suche in Google Scholar

53. Hajji, M., Mtiraoui, H., Amiri, N., Msaddek, M., Guerfel, T. Int. J. Quant. Chem. 2019, 119, https://doi.org/10.1002/qua.26000.Suche in Google Scholar

54. Venkatesh, G., Govindaraju, M., Kamal, C., Vennila, P., Kaya, S. RSC Adv. 2017, 7, 1401; https://doi.org/10.1039/c6ra25535c.Suche in Google Scholar

55. Vennila, P., Govidaraju, M., Venkatesh, G., Kamal, C. J. Mol. Struct. 2016, 111, 151; https://doi.org/10.1016/j.molstruc.2016.01.068.Suche in Google Scholar

56. Paterson, M. J., Christiansen, O., Pawłowski, F., Jørgensen, P., Hättig, C., Helgaker, T., Sałek, P. J. Chem. Phys. 2006, 124, 054322; https://doi.org/10.1063/1.2163874.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2020-1732).


Received: 2020-08-08
Accepted: 2020-11-12
Published Online: 2020-11-26
Published in Print: 2021-10-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1732/html
Button zum nach oben scrollen