Startseite Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior

  • Jieyuan Zheng , Tariq Aziz EMAIL logo , Hong Fan , Fazal Haq , Farman Ullah Khan , Roh Ullah , Bakhtar Ullah , Noor Saeed Khattak und Jiao Wei
Veröffentlicht/Copyright: 9. November 2020

Abstract

The cellulose nanocrystals (CNCs) surface modified with phenolic and acrylic resins were investigated for different properties such as thermally stability and adhesive property, the mechanical properties of CNCs and interactions of the resulting materials at a micro-level are very important. Phenolic resins are of great interest due to their smooth structure, low thermal conductivity and good thermal insulation. However, the high spray rates and poor mechanical properties limit its use for external insulation of buildings. Acrylic resins are used as a matrix resin for adhesives and composites due to their adhesion, mechanical properties, and their good chemical resistance. The brittleness of acrylic resins makes them less attractive than the structural materials, being much harder. For this reason, most of the resins are modified with suitable elastomers, which act as hardeners. Therefore, treatment of these compounds is necessary. In this research paper, the effect of CNCs surface on phenolic and acrylic resins were investigated to obtain an optimized surface using three different weight (wt%) ratios of CNCs. Scanning electronic microscopy (SEM), X-rays diffraction (XRD), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure, and investigate different properties of CNCs. Furthermore, the Zwick/Roell Z020 model was used to investigate the adhesion properties of the phenolic and acrylic resins with CNCs.


Corresponding author: Tariq Aziz, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China, E-mail:

Award Identifier / Grant number: 501100011308

Funding source: Zhejiang University

Award Identifier / Grant number: 501100004835

Acknowledgments

This research was funded by the State Key Laboratory of Chemical Engineering, Zhejiang University 310027 Hangzhou, China.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research work is not funded by any agency.

  3. Conflict of interest statement: We have no conflict of interest.

References

1. Albéndiz García, A., Rodríguez-Castellón, E., Peláez Millas, D. Surface modification of thermoplastics by low-pressure microwave O2 plasma treatment for enhancement of the adhesion of the interface box/encapsulating resin and the influence on film capacitors operating under extreme humidity conditions. Appl. Surf. Sci. 2020, 513, 145764; https://doi.org/10.1016/j.apsusc.2020.145764.Suche in Google Scholar

2. Yahagi, T., Murayama, H., Watanabe, Y., Mineta, T. Fabrication of MEMS mold with inclined micro-multi-fin structure and shape transfer to resin by thermal imprint process. Jpn. J. Appl. Phys. 2020, 59, SIIJ02; https://doi.org/10.35848/1347-4065/ab7436.Suche in Google Scholar

3. Ullah, M., Shah, L., Sayed, M., Siddiq, M., Amin, N. Micellar supported ultrafiltration of malachite green: experimental verification of theoretical approach. Z. Phys. Chem. 2018, 233, 1068.10.1515/zpch-2017-1068Suche in Google Scholar

4. Li, P., Qin, L., Wang, T., Dai, L., Li, H., Jiang, J., Zhou, J., Li, H., Cheng, X., Lei, F. Preparation and adsorption characteristics of rosin-based polymer microspheres for berberine hydrochloride and separation of total alkaloids from coptidis rhizoma. Chem. Eng. J. 2020, 392, 123707; https://doi.org/10.1016/j.cej.2019.123707.Suche in Google Scholar

5. Jamshaid, A., Iqbal, J., Hamid, A., Ghauri, M., Muhammad, N., Nasrullah, A., Rafiq, S., Shah, N. S. Fabrication and evaluation of cellulose-alginate-hydroxyapatite beads for the removal of heavy metal ions from aqueous solutions. Z. Phys. Chem. 2019, 233, 1351; https://doi.org/10.1515/zpch-2018-1287.Suche in Google Scholar

6. Nisar, J., Iqbal, M. S. A, Akhter, M., Uddin, S., Khan, R., Uddin, I., Shah, L., Khan, M. Decomposition kinetics of levofloxacin: drug-excipient interaction. Z. Phys. Chem. 2019, 234, 117.10.1515/zpch-2018-1273Suche in Google Scholar

7. Chen, F., Chi, Y., Zhang, M., Liu, Z., Fei, X., Yang, K., Fu, C. Removal of heat stable salts from N-methyldiethanolamine wastewater by anion exchange resin coupled three-compartment electrodialysis. Separ. Purif. Technol. 2020, 242, 116777; https://doi.org/10.1016/j.seppur.2020.116777.Suche in Google Scholar

8. Al-Ani, A., Stape, T. H. S., Mutluay, M., Tjaderhane, L., Tezvergil-Mutluay, A. Incorporation of dimethyl sulfoxide to model adhesive resins with different hydrophilicities: physico/mechanical properties. J. Mech. Behav. Biomed. 2019, 93, 143–150.10.1016/j.jmbbm.2019.02.015Suche in Google Scholar PubMed

9. Van Landuyt, K. L., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P., Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785; https://doi.org/10.1016/j.biomaterials.2007.04.044.Suche in Google Scholar

10. Zhang, E., Yang, J., Liu, W. Cellulose-based hydrogels with controllable electrical and mechanical properties. Z. Phys. Chem. 2018, 232, 1707; https://doi.org/10.1515/zpch-2018-1133.Suche in Google Scholar

11. Zhang, Y., Qi, F. S., Liu, Y. J. Fabrication of high B-doped ordered mesoporous carbon with 4-hydroxyphenylborate phenolic resin for supercapacitor electrode materials. RSC Adv. 2020, 10, 11210–11218; https://doi.org/10.1039/d0ra00561d.Suche in Google Scholar

12. Ziarati, H. B., Fasihi, M., Omranpour, H. The effect of resin formulation on the cellular morphology and mechanical properties of phenolic foams. J. Appl. Polym. Sci. 2020, 137, 1–11; https://doi.org/10.1002/app.48331.Suche in Google Scholar

13. Jamil, M. I., Song, L., Zhu, J., Ahmed, N., Zhan, X., Chen, F., Cheng, D., Zhang, Q. Facile approach to design a stable, damage resistant, slippery, and omniphobic surface. RSC Adv. 2020, 10, 19157–19168; https://doi.org/10.1039/d0ra01786h.Suche in Google Scholar

14. Asaro, L., Seoane, I. T., Fasce, L. A., Cyras, V. P., Manfredi, L. B. Development of low environmental impact protective coatings based on a furan resin and cellulose nanocrystals. Prog. Org. Coating 2019, 133, 229–236; https://doi.org/10.1016/j.porgcoat.2019.04.035.Suche in Google Scholar

15. Kashizadeh, R., Esfandeh, M., Rezadoust, A. M., Sahraeian, R. Physico-mechanical and thermal properties of date palm fiber/phenolic resin composites. Polym. Compos. 2019, 40, 3657–3665; https://doi.org/10.1002/pc.25228.Suche in Google Scholar

16. Jamil, M. I., Zhan, X., Chen, F., Cheng, D., Zhang, Q. Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism. Acs Appl. Mater. Inter. 2019, 11, 31532–31542; https://doi.org/10.1021/acsami.9b09819.Suche in Google Scholar

17. Liu, J., Wang, L., Li, J., Li, C., Zhang, S., Gao, Q., Zhang, W., Li, J. Degradation mechanism of Acacia mangium tannin in NaOH/urea aqueous solution and application of degradation products in phenolic adhesives. Int. J. Adhesion Adhes. 2020, 98, 102556; https://doi.org/10.1016/j.ijadhadh.2020.102556.Suche in Google Scholar

18. Taheri-Behrooz, F., Memar Maher, B., Shokrieh, M. M. Mechanical properties modification of a thin film phenolic resin filled with nano silica particles. Comput. Mater. Sci. 2015, 96, 411–415; https://doi.org/10.1016/j.commatsci.2014.08.042.Suche in Google Scholar

19. Krishnan, P. S. G., Venkatesan, N., Adhinarayanan, K. Effect of phenolic resin structure on the bonding properties of nitrile rubber-based adhesives. J. Adhes. Sci. Technol. 2004, 18, 1483–1495.10.1163/1568561042411240Suche in Google Scholar

20. Jamil, M. I., Ali, A., Haq, F., Zhang, Q., Zhan, X., Chen, F. Icephobic strategies and materials with superwettability: design principles and mechanism. Langmuir 2018, 34, 15425–15444; https://doi.org/10.1021/acs.langmuir.8b03276.Suche in Google Scholar

21. Jin, Y., Cheng, X., Zheng, Z. Preparation and characterization of phenol–formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresour. Technol. 2010, 101, 2046–2048; https://doi.org/10.1016/j.biortech.2009.09.085.Suche in Google Scholar

22. Kandola, B. K., Krishnan, L., Deli, D., Luangtriratana, P., Ebdon, J. R. Fire and mechanical properties of a novel free-radically cured phenolic resin based on a methacrylate-functional novolac and of its blends with an unsaturated polyester resin. RSC Adv. 2015, 5, 33772–33785; https://doi.org/10.1039/c5ra01813g.Suche in Google Scholar

23. Kostic, M., Nikolic, L., Nikolic, V., Petkovic, D., Igic, M., Krunic, N., Manic, M., Gligorijevic, N., Radenkovic, G. Effects of water boiling, microwave, and water bath post-polymerization on mechanical properties of acrylic denture resins. Hem. Ind. 2018, 72, 129–137; https://doi.org/10.2298/hemind170924008k.Suche in Google Scholar

24. Lai, C. P., Tsai, M. H., Chen, M., Chang, H. S., Tay, H. H. Morphology and properties of denture acrylic resins cured by microwave energy and conventional water bath. Dent. Mater. 2004, 20, 133–141; https://doi.org/10.1016/s0109-5641(03)00084-8.Suche in Google Scholar

25. Lee, H. H., Lee, C. J., Asaoka, K. Correlation in the mechanical properties of acrylic denture base resins. Dent. Mater. J. 2012, 31, 157–164; https://doi.org/10.4012/dmj.2011-205.Suche in Google Scholar

26. Nezu, T., Nagano-Takebe, F., Endo, K. Designing an antibacterial acrylic resin using the cosolvent method-effect of ethanol on the optical and mechanical properties of a cold-cure acrylic resin. Dent. Mater. J. 2017, 36, 662–668; https://doi.org/10.4012/dmj.2016-222.Suche in Google Scholar

27. Oliveira, G., Carvalho, C., Carvalho, E., Bauer, J., Leal, A. The influence of mixing methods on the compressive strength and fluoride release of conventional and resin-modified glass ionomer cements. Int. J. Dent. 2019, 2019, 1–7; https://doi.org/10.1155/2019/6834931.Suche in Google Scholar

28. Sasaki, H., Hamanaka, I., Takahashi, Y., Kawaguchi, T. Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins. Dent. Mater. J. 2016, 35, 204–209; https://doi.org/10.4012/dmj.2015-291.Suche in Google Scholar

29. Criado, P., Fraschini, C., Jamshidian, M., Salmieri, S., Safrany, A., Lacroix, M. Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties. Cellulose 2017, 24, 2111–2124; https://doi.org/10.1007/s10570-017-1241-x.Suche in Google Scholar

30. Dhuiege, B., Pecastaings, G., Sebe, G. Sustainable approach for the direct functionalization of cellulose nanocrystals dispersed in water by transesterification of vinyl acetate. Acs Sustain. Chem. Eng. 2019, 7, 187–196; https://doi.org/10.1021/acssuschemeng.8b02833.Suche in Google Scholar

31. Khan, A., Afzal, M., Shah, L., Zaman, K., Khan, G., Badshah, A. Preparation and physicochemical characterization of dual responsive and chemically modified cellulose based copolymer hydrogels. Z. Phys. Chem. 2019, 0, 1470.10.1515/zpch-2019-1470Suche in Google Scholar

32. Bondancia, T. J., Mattoso, L. H. C., Marconcini, J. M., Farinas, C. S. A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol. Prog. 2017, 33, 1085–1095; https://doi.org/10.1002/btpr.2486.Suche in Google Scholar

33. Dong, F., Yan, M. L., Jin, C. D., Li, S. J. Characterization of type-II acetylated cellulose nanocrystals with various degree of substitution and its compatibility in PLA films. Polym. Bull. 2017, 9, 1–14; https://doi.org/10.3390/polym9080346.Suche in Google Scholar

34. De France, K. J., Babi, M., Vapaavuori, J., Hoare, T., Moran-Mirabal, J., Cranston, E. D. 2.5D hierarchical structuring of nanocomposite hydrogel films containing cellulose nanocrystals. Acs Appl. Mater. Inter. 2019, 11, 6325–6335; https://doi.org/10.1021/acsami.8b16232.Suche in Google Scholar

35. Moo-Tun, N. M., Valadez-Gonzalez, A., Uribe-Calderon, J. A. Thermo-oxidative aging of LDPE/stearoyl chloride-grafted cellulose nanocrystals blown films. J. Polym. Environ. 2019, 27, 1226–1239; https://doi.org/10.1007/s10924-019-01424-z.Suche in Google Scholar

36. Chen, J. D., Zhou, Z. X., Chen, Z. X., Yuan, W. Z., Li, M. Q. A fluorescent nanoprobe based on cellulose nanocrystals with porphyrin pendants for selective quantitative trace detection of Hg2+. New J. Chem. 2017, 41, 10272–10280; https://doi.org/10.1039/c7nj01263b.Suche in Google Scholar

37. Fu, T. F., Montes, F., Suraneni, P., Youngblood, J., Weiss, J. The influence of cellulose nanocrystals on the hydration and flexural strength of Portland cement pastes. Polym. Bull. 2017, 9, 1–16; https://doi.org/10.3390/polym9090424.Suche in Google Scholar

38. Emam, H. E., Shaheen, T. I. Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J. Polym. Environ. 2019, 27, 2419–2427; https://doi.org/10.1007/s10924-019-01533-9.Suche in Google Scholar

39. Barajas-Ledesma, R. M., Patti, A. F., Wong, V. N. L., Raghuwanshi, V. S., Garnier, G. Engineering nanocellulose superabsorbent structure by controlling the drying rate. Colloid. Surface. Physicochem. Eng. Aspect. 2020, 600, 124943; https://doi.org/10.1016/j.colsurfa.2020.124943.Suche in Google Scholar

40. Yu, H. Y., Wang, C., Abdalkarim, S. Y. H. Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly(lactic acid) nanofibers for controlling long-term in vitro drug release. Cellulose 2017, 24, 4461–4477; https://doi.org/10.1007/s10570-017-1431-6.Suche in Google Scholar

41. Aziz, T., Fan, H., Haq, F., Khan, F. U., Numan, A., Ullah, A., Wazir, N. Facile modification and application of cellulose nanocrystals. Iran. Polym. J. (Engl. Ed.) 2019, 28, 707–724; https://doi.org/10.1007/s13726-019-00734-2.Suche in Google Scholar

42. Mendoza, D. J., Hossain, L., Browne, C., Raghuwanshi, V. S., Simon, G. P., Garnier, G. Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation. Carbohydr. Polym. 2020, 245, 116566; https://doi.org/10.1016/j.carbpol.2020.116566.Suche in Google Scholar

43. Watermann, T., Sebastiani, D. Liquid water confined in cellulose with variable interfacial hydrophilicity. Z. Phys. Chem. 2018, 232, 989; https://doi.org/10.1515/zpch-2017-1011.Suche in Google Scholar

44. Ching, Y. C., Ali, M. E., Abdullah, L. C., Choo, K. W., Kuan, Y. C., Julaihi, S. J., Chuah, C. H., Liou, N. S. Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 2016, 23, 1011–1030; https://doi.org/10.1007/s10570-016-0868-3.Suche in Google Scholar

45. Fayyaz, F., Rabbani, M., Rahimi, R., Rassa, M. Preparation, characterization and photo-inactivation of cellulose nanocrystals impregnated with meso-tetrakis(4-nitrophenyl)porphyrin. Iran Chem. Commun. 2019, 7, 53–62.Suche in Google Scholar

46. Aziz, T., Fan, H., Khan, F. U., Ullah, R., Haq, F., Iqbal, M., Ullah, A. Synthesis of carboxymethyl starch-bio-based epoxy resin and their impact on mechanical properties. Z. Phys. Chem. 2019, 0, 20191434.10.1515/zpch-2019-1434Suche in Google Scholar

47. Cudjoe, E., Younesi, M., Cudjoe, E., Akkus, O., Rowan, S. J. Synthesis and fabrication of nanocomposite fibers of collagen-cellulose nanocrystals by coelectrocompaction. Biomacromolecules 2017, 18, 1259–1267; https://doi.org/10.1021/acs.biomac.7b00005.Suche in Google Scholar

48. Du, W. B., Guo, J., Li, H. M., Gao, Y. Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces. Acs Sustain. Chem. Eng. 2017, 5, 7514–7523; https://doi.org/10.1021/acssuschemeng.7b00375.Suche in Google Scholar

49. Gray, D. G. Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials-Basel 2016, 6, 1–9; https://doi.org/10.3390/nano6110213.Suche in Google Scholar

50. Guo, X., Wu, Y. Q., Xie, X. F. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus. Sci. Rep-Uk 2017, 7, 1–12; https://doi.org/10.1038/s41598-017-14664-7.Suche in Google Scholar

51. Little, D., Chai-Adisaksopha, C., Hillis, C., Witt, D. M., Monreal, M., Crowther, M. A., Siegal, D. M. Resumption of anticoagulant therapy after anticoagulant-related gastrointestinal bleeding: a systematic review and meta-analysis. Thromb. Res. 2019, 175, 102–109; https://doi.org/10.1016/j.thromres.2019.01.020.Suche in Google Scholar

52. Saelices, C. J., Save, M., Capron, I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size. Polym. Chem-Uk 2019, 10, 727–737.10.1039/C8PY01575ASuche in Google Scholar

53. Kargarzadeh, H., Mariano, M., Gopakumar, D., Ahmad, I., Thomas, S., Dufresne, A., Huang, J., Lin, N. Advances in cellulose nanomaterials. Cellulose 2018, 25, 2151–2189; https://doi.org/10.1007/s10570-018-1723-5.Suche in Google Scholar

54. Kakakhel, S. S., Rehman, N., Mian, I., Ullah, H. What we really know about biosynthesis of cellulose from Ficus palmate: a novel biomass production. Z. Phys. Chem. 2019, 234, 313–321.10.1515/zpch-2019-1378Suche in Google Scholar

55. Bobrowski, A., Grabowska, B. FTIR Method Stud. Resol. Type Phenol Resin Struct. Air Atmos. Some Time Intervals 2016, 41, 1–7 2016.10.7494/mafe.2015.41.3.107Suche in Google Scholar

56. Zhang, Y., Qi, F., Liu, Y. Fabrication of high B-doped ordered mesoporous carbon with 4-hydroxyphenylborate phenolic resin for supercapacitor electrode materials. RSC Adv. 2020, 10, 11210–11218; https://doi.org/10.1039/d0ra00561d.Suche in Google Scholar

57. Luginina, A. A., Kuznetsov, S. V., Voronov, V. V., Yapryntsev, A. D., Ivanov, V. K., Petukhov, D. I., Lyapin, A. A., Ermakov, A. S., Pominova, D. V., Chernova, E. V., Pynenkov, A. A., Nishchev, K. N., Fedorov, P. P. Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin. Nanosyst-Phys. Chem. M 2019, 10, 585–598; https://doi.org/10.17586/2220-8054-2019-10-5-585-598.Suche in Google Scholar

58. Abdulkareem, M., Taqa, A., Hatim, N. Study of fourier transform infrared of adding metallic nanofillers on heat cure acrylic resin treated by microwave. Hamdan Med. J. 2019, 12, 57–64.10.4103/HMJ.HMJ_70_18Suche in Google Scholar

59. Mascheroni, E., Rampazzo, R., Ortenzi, M. A., Piva, G., Bonetti, S., Piergiovanni, L. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 2016, 23, 779–793; https://doi.org/10.1007/s10570-015-0853-2.Suche in Google Scholar

60. Pereira, P. H. F., Júnior, H. L. O., Coutinho, L. V., Duchemin, B., Cioffi, M. O. H. Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose 2020, 27, 5745–5756; https://doi.org/10.1007/s10570-020-03179-6.Suche in Google Scholar

61. Correa, A. C., Teodoro, K. B. R., Simao, J. A., Claro, P. I. C., Teixeira, E. D., Mattoso, L. H. C., Marconcini, J. M. Cellulose nanocrystals from curaua fibers and poly[ethylene-co-(vinyl acetate)] nanocomposites: effect of drying process of CNCs on thermal and mechanical properties. Polym. Compos. 2020, 41, 1736–1748; https://doi.org/10.1002/pc.25493.Suche in Google Scholar

62. Li, M. F., Zhao, X., Li, Y. Y., Wang, W., Zhong, W. B., Luo, M. Y., Lu, Y., Liu, K., Liu, Q. Z., Wang, Y. D., Wang, D. Synergistic improvement for mechanical, thermal and optical properties of PVA-co-PE nanofiber/epoxy composites with cellulose nanocrystals. Compos. Sci. Technol. 2020, 188, 1–8; https://doi.org/10.1016/j.compscitech.2020.107990.Suche in Google Scholar

63. Souza Neto, F. N. D., Sala, R. L., Fernandes, R. A., Oliveira Xavier, T. P., Cruz, S. A., Paranhos, C. M., Monteiro, D. R., Barbosa, D. B., Delbem, A. C. B., Camargo, E. R. D. Effect of synthetic colloidal nanoparticles in acrylic resin of dental use. Eur. Polym. J. 2019, 112, 531–538; https://doi.org/10.1016/j.eurpolymj.2018.10.009.Suche in Google Scholar

64. Liu, Y. S., Yu, K. Y., Xie, M. J., Lu, S., Yang, Y. Z., Wang, H., Jia, H. X. Hydrate salt/self-curing acrylic resin form-stable phase change materials with enhanced surface stability and thermal properties via the incorporation of graphene oxide. Int. J. Energy Res. 2020, 44, 1–15; https://doi.org/10.1002/er.5342.Suche in Google Scholar

65. Akgun, N., Buyukyonga, O. N., Acar, I., Guclu, G. Synthesis of novel acrylic modified water reducible alkyd resin: investigation of acrylic copolymer ratio effect on film properties and thermal behaviors. Polym. Eng. Sci. 2016, 56, 947–954; https://doi.org/10.1002/pen.24324.Suche in Google Scholar

66. Lu, Z., Li, B., Yang, D., Lv, H., Xue, M., Zhang, C. A self-assembled silicon/phenolic resin-based carbon core–shell nanocomposite as an anode material for lithium-ion batteries. RSC Adv. 2018, 8, 3477–3482; https://doi.org/10.1039/c7ra13580g.Suche in Google Scholar

67. Myung, H.-S., Kim, D. Preparation of composite adsorbents by activation of water plant sludge and phenolic resin mixtures. Carbon Lett. 2001, 1, 1–4.Suche in Google Scholar

68. Janković, B. Thermal degradation process of the cured phenolic triazine thermoset resin (primaset® PT-30). Part I. Systematic non-isothermal kinetic analysis. Thermochim. Acta 2011, 519, 114–124.10.1016/j.tca.2011.03.014Suche in Google Scholar

69. Kumari, S., Chauhan, G. S. New cellulose–lysine schiff-base-based sensor–adsorbent for mercury ions. Acs Appl. Mater. Inter. 2014, 6, 5908–5917; https://doi.org/10.1021/am500820n.Suche in Google Scholar

70. Ávila Ramírez, J. A., Suriano, C. J., Cerrutti, P., Foresti, M. L. Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr. Polym. 2014, 114, 416–423; https://doi.org/10.1016/j.carbpol.2014.08.020.Suche in Google Scholar

71. Huang, F., Wu, X., Yu, Y., Lu, Y., Chen, Q. Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs. Carbohydr. Polym. 2017, 155, 525–534; https://doi.org/10.1016/j.carbpol.2016.09.010.Suche in Google Scholar

72. Wan Ishak, W. H., Ahmad, I., Ramli, S., Mohd Amin, M. C. I. Gamma irradiation-assisted synthesis of cellulose nanocrystal-reinforced gelatin hydrogels. Nanomaterials-Basel 2018, 8, 749; https://doi.org/10.3390/nano8100749.Suche in Google Scholar

73. Fotie, G., Rampazzo, R., Ortenzi, M. A., Checchia, S., Fessas, D., Piergiovanni, L. The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials. Polym. Bull. 2017, 9, 415; https://doi.org/10.3390/polym9090415.Suche in Google Scholar

74. Beyene, D., Chae, M., Dai, J., Danumah, C., Tosto, F., Demesa, A. G., Bressler, D. Characterization of cellulase-treated fibers and resulting cellulose nanocrystals generated through acid hydrolysis. Materials 2018, 11, 1272; https://doi.org/10.3390/ma11081272.Suche in Google Scholar

75. Aziz, T., Fan, H., Zhang, X., Khan, F. U. Synergistic impact of cellulose nanocrystals and calcium sulfate fillers on adhesion behavior of epoxy resin. Mater. Res. Express 2019, 6, 1150b7; https://doi.org/10.1088/2053-1591/ab4df6.Suche in Google Scholar

76. Oyar, P., Sana, F. A., Durkan, R. Comparison of mechanical properties of heat-polymerized acrylic resin with silver nanoparticles added at different concentrations and sizes. J. Appl. Polym. Sci. 2018, 135, 1–6; https://doi.org/10.1002/app.45807.Suche in Google Scholar

77. Khalil, B. I., Gharkan, M. R., Ali, A. H. Study of the effects of adding yttrium oxide particles in some physical, thermal, and mechanical properties of heat-curing acrylic resin. Technol. Mater. Renew. Energy, Environ. Sustain. 2018, 18, 1–11.10.1063/1.5039221Suche in Google Scholar

78. Ashida, T., Ochi, M., Handa, K. Structure and adhesive properties of epoxy resins modified with core/shell acrylic particles. J. Adhes. Sci. Technol. 1998, 12, 749–761; https://doi.org/10.1163/156856198x00272.Suche in Google Scholar

79. Fortes, C. B. B., Collares, F. M., Leitune, V. C. B., Schiroky, P. R., Rodrigues, S. B., Samuel, S. M. W., Petzhold, C. L., Stefani, V. Effect of disinfection techniques on physical-mechanical properties of a microwave-activated acrylic resin. Polimeros 2018, 28, 215–219; https://doi.org/10.1590/0104-1428.004616.Suche in Google Scholar

80. Ashida, T., Ochi, M. Structure and adhesive properties of epoxy resins modified with acrylic particles. J. Adhes. Sci. Technol. 1997, 11, 519–530; https://doi.org/10.1163/156856197x00066.Suche in Google Scholar

81. Yang, W. J., Rallini, M., Natali, M., Kenny, J., Ma, P. M., Dong, W. F., Torre, L., Puglia, D. Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: a comparative study. Mater. Des. 2019, 161, 55–63; https://doi.org/10.1016/j.matdes.2018.11.032.Suche in Google Scholar

82. Achary, P. S., Ramaswamy, R. Reactive compatibilization of a nitrile rubber phenolic resin blend: effect on adhesive and composite properties. J. Appl. Polym. Sci. 1998, 69, 1187–1201; https://doi.org/10.1002/(sici)1097-4628(19980808)69:6<1187::aid-app16>3.0.co;2-q.10.1002/(SICI)1097-4628(19980808)69:6<1187::AID-APP16>3.0.CO;2-QSuche in Google Scholar

83. Liu, J., Wang, L. L., Zhang, W., Han, Y. M. Phenolic resin foam composites reinforced by acetylated poplar fiber with high mechanical properties, low pulverization ratio, and good thermal insulation and flame retardant performance. Materials 2020, 13, 1–14.10.3390/ma13010148Suche in Google Scholar

84. Ly, E. B., Lette, M. J., Diallo, A. K., Gassama, A., Takasaki, A., Ndiaye, D. Effect of reinforcing fillers and fibres treatment on morphological and mechanical properties of typha-phenolic resin composites. Fibers Polym. 2019, 20, 1046–1053; https://doi.org/10.1007/s12221-019-1087-y.Suche in Google Scholar

Received: 2020-06-12
Accepted: 2020-10-26
Published Online: 2020-11-09
Published in Print: 2021-10-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1697/html
Button zum nach oben scrollen