Startseite Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations

  • Muhammad H. Esmaiel , Hany A. Basuony , Mohamed K. Al-Nawasany , Musab M. Shulkamy , Ibrahim A. Shaaban , Ahmed M. Abuelela , Wajdi M. Zoghaib und Tarek A. Mohamed EMAIL logo
Veröffentlicht/Copyright: 22. Juni 2019

Abstract

Raman (3700–100 cm−1) and infrared (4000–400 cm−1) spectra of 2,5-Dimercapto-1,3,4-thiadiazol (DMTD) were recorded in the solid phase. Six structures (16) were initially proposed for DMTD as a result of thiol-thione tautomerism and internal rotation(s) of thiol group(s) around the C–S bond. Quantum chemical calculations were carried out for an isolated molecule (16) using density functional theory (B3LYP) and ab initio MP2(full) methods utilizing 6-31G(d) and 6-311++G(d,p) basis sets which favor thiol-thione tautomerism (structure 4). Relaxed potential energy surface scans of structure 4 revealed an additional conformer (the thiol group is out-of-plane, structure 7) using the aforementioned methods at 6-311++G(d,p) basis set. For additional verification, plane-wave solid state calculations were carried out at PW91 and PBEsol came out in favor of conformer 7. This is in agreement with the computed/observed SH in-plane bending of S-7 (959/941 cm−1) rather than the one estimated at (880 cm−1) for S-4. Moreover, the observed split IR/Raman bands were found consistent with solid state calculated frequencies of S-7 assuming two molecules per unit cell bonded via H-bonding intermolecular interactions. Aided by vibrational frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed IR and Raman bands is proposed herein. Furthermore, we have estimated the frontier molecular orbitals and atomic charges to account for the corrosion inhibition efficiency of DMTD along with its binding sites to the metal surface. Our results are discussed herein and compared to similar molecules whenever appropriate.

Acknowledgement

TAM sincerely thanks Professor James R. Durig, Chemistry Department, College of Arts and Sciences, University of Missouri, Kansas City, MO 64110, USA, for giving him the opportunity to use G- and F-matrix programs to calculate FCs in internal coordinates and PEDs.

References

1. N. Vasimalai, S. A. John, Analyst 137 (2012) 3349.10.1039/c2an35190kSuche in Google Scholar PubMed

2. X. He, Z. Su, Q. Xie, C. Chen, Y. Fu, L. Chen, Y. Liu, M. Ma, L. Deng, D. Qin, Y. Luo, S. Yao, Microchim. Acta 173 (2011) 95.10.1007/s00604-010-0541-8Suche in Google Scholar

3. M. J. Ahmed, I. Jahan, S. Banoo, Anal. Sci. 18 (2002) 805.10.2116/analsci.18.805Suche in Google Scholar PubMed

4. Y. Fu, P. Li, L. Bu, T. Wang, Q. Xie, J. Chen, S. Yao, Anal. Chem. 83 (2011) 6511.10.1021/ac200471vSuche in Google Scholar PubMed

5. Y. Fu, C. Zou, Q. Xie, X. Xu, C. Chen, W. Deng, S. Yao, J. Phys. Chem. B 113 (2009) 1332.10.1021/jp807337fSuche in Google Scholar PubMed

6. Ł. Popiołek, U. Kosikowska, M. Dobosz, A. Malm, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 468.10.1080/10426507.2011.625511Suche in Google Scholar

7. N. S. Jumat Salimon, E. Yousif, A. Hameed, H. Ibraheem, Aust. J. Basic Appl. Sci. 4 (2010/7) 6.Suche in Google Scholar

8. N. Rezki, A. Al-Yahyawi, S. Bardaweel, F. Al-Blewi, M. Aouad, Molecules 20 (2015) 16048.10.3390/molecules200916048Suche in Google Scholar PubMed PubMed Central

9. A. L. Squissato, W. P. Silva, A. T. S. Del Claro, D. P. Rocha, R. M. Dornellas, E. M. Richter, C. W. Foster, C. E. Banks, R. A. A. Munoz, Talanta 174 (2017) 420.10.1016/j.talanta.2017.06.042Suche in Google Scholar PubMed

10. T. T. Qin, J. Li, H. Q. Luo, M. Li, N. B. Li, Corros. Sci. 53 (2011) 1072.10.1016/j.corsci.2010.12.002Suche in Google Scholar

11. W. Chen, H. Q. Luo, N. B. Li, Corros. Sci. 53 (2011) 3356.10.1016/j.corsci.2011.06.013Suche in Google Scholar

12. X. Yang, Y. Huang, G. Liu, J. Liu, L. Ma, X. Niu, X. Qu, J. Taiwan Inst. Chem. E. 93 (2018) 109.10.1016/j.jtice.2018.09.022Suche in Google Scholar

13. Y. El Bakri, L. Guo, E. H. Anouar, E. M. Essassi, J. Mol. Liq. 274 (2019) 759.10.1016/j.molliq.2018.11.048Suche in Google Scholar

14. N. Vasimalai, G. Sheeba, S. A. John, J. Hazard Mater 213214 (2012) 193.10.1016/j.jhazmat.2012.01.079Suche in Google Scholar

15. P. Kannan, S. A. John, Anal. Biochem. 386 (2009) 65.10.1016/j.ab.2008.11.043Suche in Google Scholar

16. L. Jin, G. Wang, X. Li, L. Li, J. Appl. Electrochem. 41 (2011) 377.10.1007/s10800-010-0246-zSuche in Google Scholar

17. Y. Kiya, G. R. Hutchison, J. C. Henderson, T. Sarukawa, O. Hatozaki, N. Oyama, H. D. Abruña, Langmuir 22 (2006) 10554.10.1021/la061213qSuche in Google Scholar

18. J. Gao, M. A. Lowe, S. Conte, S. E. Burkhardt, H. D. Abruña, Chem. Eur. J. 18 (2012) 8521.10.1002/chem.201103535Suche in Google Scholar

19. H. G. M. Edwards, A. F. Johnson, E. E. Lawson, J. Mol. Struct. 351 (1995) 51.10.1016/0022-2860(94)08485-ZSuche in Google Scholar

20. J. M. Pope, T. Sato, E. Shoji, D. A. Buttry, T. Sotomura, N. Oyama, J. Power Sources 68 (1997) 739.10.1016/S0378-7753(96)02598-0Suche in Google Scholar

21. E. E. Lawson, H. G. M. Edwards, A. F. Johnson, J. Raman Spectrosc 26 (1995) 617.10.1002/jrs.1250260806Suche in Google Scholar

22. F. Hipler, R. A. Fischer, J. Müller, J. Chem. Soc. Perkin Trans. 2 (2002) 1620.10.1039/B201887JSuche in Google Scholar

23. S. Millefiori, A. Millefiori, J. Mol. Struct. Theochem 151 (1987) 373.10.1016/0166-1280(87)85072-8Suche in Google Scholar

24. K. L. Williamson, J. D. Roberts, Heterocycles 11 (1978) 12.10.3987/S(N)-1978-01-0121Suche in Google Scholar

25. A. R. Katritzky, Z. Wang, R. J. Offerman, J. Heterocycl. Chem. 27 (1990) 139.10.1002/jhet.5570270204Suche in Google Scholar

26. N. Maiti, R. Chadha, A. Das, S. Kapoor, RSC Adv. 6 (2016) 62529.10.1039/C6RA10404ESuche in Google Scholar

27. J. K. Mistry, R. Dawes, A. Choudhury, M. R. Van De Mark, J. Heterocycl. Chem. 51 (2014) 747.10.1002/jhet.1903Suche in Google Scholar

28. J. Bats, Acta Crystallogr. B 32 (1976) 2866.10.1107/S0567740876009059Suche in Google Scholar

29. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar

30. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar

31. C. Møller, M. S. Plesset, Phys. Rev. 46 (1934) 618.10.1103/PhysRev.46.618Suche in Google Scholar

32. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.10.1103/PhysRevB.46.6671Suche in Google Scholar PubMed

33. J. P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.10.1103/PhysRevB.45.13244Suche in Google Scholar

34. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100 (2008) 136406.10.1103/PhysRevLett.100.136406Suche in Google Scholar PubMed

35. I. B. Obot, N. O. Obi-Egbedi, Colloids Surf. A 330 (2008) 207.10.1016/j.colsurfa.2008.07.058Suche in Google Scholar

36. S. Benabid, T. Douadi, S. Issaadi, C. Penverne, S. Chafaa, Measurement 99 (2017) 53.10.1016/j.measurement.2016.12.022Suche in Google Scholar

37. F. E.-T. Heakal, M. M. Osman, M. A. Deyab, A. E. Elkholy, Z. Phys. Chem. 232 (2017) 13.10.1515/zpch-2017-0949Suche in Google Scholar

38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. O. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, D. N. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, (2009).Suche in Google Scholar

39. P. Pulay, Mol. Phys. 17 (1969) 197.10.1080/00268976900100941Suche in Google Scholar

40. J. Clark Stewart, D. Segall Matthew, J. Pickard Chris, J. Hasnip Phil, I. J. Probert Matt, K. Refson, C. Payne Mike, Z. Kristallogr. Cryst. Mater. 220 (2005) 567.10.1524/zkri.220.5.567.65075Suche in Google Scholar

41. D. R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43 (1979) 1494.10.1103/PhysRevLett.43.1494Suche in Google Scholar

42. B. G. Pfrommer, M. Côté, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131 (1997) 233.10.1006/jcph.1996.5612Suche in Google Scholar

43. K. Refson, P. R. Tulip, S. J. Clark, Phys. Rev. B 73 (2006) 155114.10.1103/PhysRevB.73.155114Suche in Google Scholar

44. T. Koopmans, Physica 1 (1934) 104.10.1016/S0031-8914(34)90011-2Suche in Google Scholar

45. R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSuche in Google Scholar

46. R. G. Pearson, Inorg. Chem. 27 (1988) 734.10.1021/ic00277a030Suche in Google Scholar

47. Z. Zhang, N. Tian, X. Li, L. Zhang, L. Wu, Y. Huang, Appl. Surf. Sci. 357 (2015) 845.10.1016/j.apsusc.2015.09.092Suche in Google Scholar

48. J. B. Foresman, A. Frisch, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Wallingford, USA (2015).Suche in Google Scholar

49. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 41 (2008) 466.10.1107/S0021889807067908Suche in Google Scholar

50. W. M. Haynes, CRC Handbook of Chemistry and Physics, 97th Edition, CRC Press, Boca Raton (2016).10.1201/9781315380476Suche in Google Scholar

51. A. Bondi, J. Phys. Chem. 68 (1964) 441.10.1021/j100785a001Suche in Google Scholar

52. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins College Publishers, New York, NY (1983).Suche in Google Scholar

53. G. A. Guirgis, Y. D. Hsu, A. C. Vlaservich, H. D. Stidham, J. R. Durig, J. Mol. Struct. Theochem 378 (1996) 83.10.1016/S0166-1280(96)91003-9Suche in Google Scholar

54. E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, New York (2012).Suche in Google Scholar

55. H. J. Schachtshneider, Vibrational Analysis of Polyatomic Molecules, Parts V and VI, Technical Report Nos. 231 and 57, Shell Development, Emeryville, California (1964/1965).Suche in Google Scholar

56. D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, John Wiley & Sons, Inc., New York (2004).Suche in Google Scholar

57. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037.10.1021/ja00362a005Suche in Google Scholar

58. J. Baker, A. A. Jarzecki, P. Pulay, J. Phys. Chem. A 102 (1998) 1412.10.1021/jp980038mSuche in Google Scholar

59. M. S. Afifi, R. S. Farag, I. A. Shaaban, L. D. Wilson, W. M. Zoghaib, T. A. Mohamed, Spectrochim. Acta A Mol. Biomol. Spectrosc. 111 (2013) 277.10.1016/j.saa.2013.04.004Suche in Google Scholar

60. I. A. Shaaban, A. E. Hassan, A. M. Abuelela, W. M. Zoghaieb, T. A. Mohamed, J. Mol. Struct. 1103 (2016) 70.10.1016/j.molstruc.2015.09.007Suche in Google Scholar

61. Y. B. Shankar Rao, M. V. S. Prasad, N. Udaya Sri, V. Veeraiah, J. Mol. Struct. 1108 (2016) 567.10.1016/j.molstruc.2015.12.008Suche in Google Scholar

62. S. Meng, Y. Zhao, J. Xue, X. Zheng, Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 (2018) 478.10.1016/j.saa.2017.09.053Suche in Google Scholar

63. N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Elsevier Science, Academic Press, New York (1990).Suche in Google Scholar

64. P. Senet, Chem. Phys. Lett. 275 (1997) 527.10.1016/S0009-2614(97)00799-9Suche in Google Scholar

65. D. K. Yadav, B. Maiti, M. A. Quraishi, Corros. Sci. 52 (2010) 3586.10.1016/j.corsci.2010.06.030Suche in Google Scholar

66. S. Martinez, Mater. Chem. Phys. 77 (2003) 97.10.1016/S0254-0584(01)00569-7Suche in Google Scholar

67. G. Gece, Corros. Sci. 50 (2008) 2981.10.1016/j.corsci.2008.08.043Suche in Google Scholar

68. N. Khalil, Electrochim. Acta 48 (2003) 2635.10.1016/S0013-4686(03)00307-4Suche in Google Scholar

69. M. S. Masoud, M. K. Awad, M. A. Shaker, M. M. T. El-Tahawy, Corros. Sci. 52 (2010) 2387.10.1016/j.corsci.2010.04.011Suche in Google Scholar

70. F. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, Y. Chen, Corros. Sci. 61 (2012) 1.10.1016/j.corsci.2012.03.045Suche in Google Scholar

71. A. Aloysius, R. Ramanathan, A. Christy, S. Baskaran, N. Antony, Egypt. J. Petrol. 27 (2018) 371.10.1016/j.ejpe.2017.06.003Suche in Google Scholar

72. A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735.10.1063/1.449486Suche in Google Scholar

73. B. Geboes, K. Baert, A. Hubin, T. Breugelmans, Electrochim. Acta 156 (2015) 308.10.1016/j.electacta.2015.01.036Suche in Google Scholar

74. U. Ghani, N. Ullah, Bioorg. Med. Chem. 18 (2010) 4042.10.1016/j.bmc.2010.04.021Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1346).


Received: 2018-11-25
Accepted: 2019-05-20
Published Online: 2019-06-22
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1346/html?lang=de
Button zum nach oben scrollen