Home The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
Article
Licensed
Unlicensed Requires Authentication

The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces

  • Stephen G. Hickey EMAIL logo
Published/Copyright: April 27, 2018

Abstract

The application of photoelectrochemical methods presents the researcher with a powerful set of versatile tools by which photoactive materials, such as semiconductor quantum dots, at conductive interfaces may be interrogated. While the range of photoelectrochemical techniques available is quite large, it is surprising that very few have found their way into common usage within the nanoparticle community. Here a number of photoelectrochemical techniques and the principles upon which they are based are introduced. A short discussion on the criticality of ensuring the nanoparticles are reliably anchored to the substrate is followed by an introduction to the basic set of equipment required in order to enable the investigator to undertake such experiments. Subsequently the four techniques of transient photocurrent response to square wave illumination, photocurrent spectroscopy, intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy are introduced. Finally, the information that can be acquired using such techniques is provided with emphasis being placed on a number of case studies exemplifying the application of photoelectrochemical techniques to nanoparticles at interfaces, in particular optically transparent electrodes.

Acknowledgements

It gives me great pleasure to dedicate this work to this special issue celebrating the 60th birthday of Alexander Eychmüller. Alex, I look forward to the equally great pleasure of having the privilege of contributing to a special issue celebrating your next milestone birthday. Congratulations on your momentous achievements to date and I am proud to have been associated, even if only in some small part, with your grand scheme. Financial support for the much of the work presented here was provided by the Deutsche Forschungsgemeinschaft (DFG) through grants HI-1113/3-1 and HI-1113/5-1 and Science Foundation lreland’s ETS Walton Visitor award scheme grant 11/W.1/12085, is greatly acknowledged.

References

1. S. Prybyla, W. S. Struve, B. A. Parkinson, J. Electrochem. Soc. 1587 (1984) 131.10.1149/1.2115915Search in Google Scholar

2. T. Sakata, E. Janata, W. Jaegermann, H. Tributsch, J. Electrochem. Soc. 133 (1986) 339.10.1149/1.2108573Search in Google Scholar

3. R. L. Cook, P. F. Dempsey, A. F. Sammells, J. Electrochem. Soc. 133 (1986) 1821.10.1149/1.2109030Search in Google Scholar

4. W. Jaegermann, T. Sakata, E. Janata, H. Tributsch, J. Electroanal. Chem. 189 (1985) 65.10.1016/0368-1874(85)85626-4Search in Google Scholar

5. R. H. Wilson, T. Sakata, T. Kawai, K. Hashimoto, J. Electrochem. Soc. 132 (1985) 1082.10.1149/1.2114019Search in Google Scholar

6. G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, I. Uhlendorf, J. Phys. Chem. B 103 (1999) 692.10.1021/jp984060rSearch in Google Scholar

7. L. M. Peter, K. G. U. Wijayantha, Electrochem. Commun. 1 (1999) 576.10.1016/S1388-2481(99)00120-4Search in Google Scholar

8. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, Nat. Mater. 4 (2005) 138.10.1038/nmat1299Search in Google Scholar PubMed

9. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent, Nature 442 (2006) 180.10.1038/nature04855Search in Google Scholar PubMed

10. N. Pradhan, D. D. Sarma, J. Phys. Chem. Lett. 2 (2011) 2818.10.1021/jz201132sSearch in Google Scholar

11. S. K. Panda, S. G. Hickey, H. V. Demir, A. Eychmüller, Angew. Chem. Int. Ed. 50 (2011) 4432.10.1002/anie.201100464Search in Google Scholar PubMed

12. X. Y. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, H. V. Demir, ACS Nano 8 (2014) 8224.10.1021/nn502588kSearch in Google Scholar PubMed

13. J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, P. N. Prasad, Adv. Mater. 23 (2011) 3984.10.1002/adma.201101912Search in Google Scholar PubMed

14. L. Etgar, T. Moehl, S. Gabriel, S. G. Hickey, A. Eychmüller, M. Grätzel, ACS Nano 6 (2012) 3092.10.1021/nn2048153Search in Google Scholar PubMed

15. M. F. Oszajca, M. I. Bodnarchuk, M. V. Kovalenko, Chem. Mater. 26 (2014) 5422.10.1021/cm5024508Search in Google Scholar

16. S. Kruger, S. G. Hickey, S. Tscharntke, A. Eychmuller, J. Phys. Chem. C 115 (2011) 13047.10.1021/jp200935xSearch in Google Scholar

17. J. Poppe, S. Gabriel, L. Liebscher, S. G. Hickey, A. Eychmuller, J. Mater. Chem. C 1 (2013) 1515.10.1039/c2tc00863gSearch in Google Scholar

18. J. Poppe, S. G. Hickey, A. Eychmuller, J. Phys. Chem. C 118 (2014) 17123.10.1021/jp5016092Search in Google Scholar

19. L. M. Peter, Chem. Rev. 90 (1990) 753.10.1021/cr00103a005Search in Google Scholar

20. P. P. Ingole, S. G. Hickey, C. Waurisch, N. Gaponik, A. Eychmuller, Z. Phys. Chem. Int. 227 (2013) 1173.Search in Google Scholar

21. S. Drouard, S. G. Hickey, D. J. Riley, Chem. Commun. (1999) 67.10.1039/a808572bSearch in Google Scholar

22. S. G. Hickey, D. J. Riley, J. Phys. Chem. B 103 (1999) 4599.10.1021/jp990020rSearch in Google Scholar

23. S. G. Hickey, D. J. Riley, Electrochim. Acta 45 (2000) 3277.10.1016/S0013-4686(00)00431-XSearch in Google Scholar

24. S. G. Hickey, D. J. Riley, E. J. Tull, J. Phys. Chem. B 104 (2000) 7623.10.1021/jp993858nSearch in Google Scholar

25. L. M. Peter, D. J. Riley, E. J. Tull, K. G. U. Wijayantha, Chem. Commun. (2002) 1030.10.1039/b201661cSearch in Google Scholar PubMed

26. E. Bakkers, J. J. Kelly, D. Vanmaekelbergh, J. Electroanal. Chem. 482 (2000) 48.10.1016/S0022-0728(00)00016-4Search in Google Scholar

27. E. Bakkers, E. Reitsma, J. J. Kelly, D. Vanmaekelbergh, J. Phys. Chem. B 103 (1999) 2781.10.1021/jp9841283Search in Google Scholar

28. E. Bakkers, A. W. Marsman, L. W. Jenneskens, D. Vanmaekelbergh, Angew. Chem. Int. Ed. 39 (2000) 2297.10.1002/1521-3773(20000703)39:13<2297::AID-ANIE2297>3.0.CO;2-1Search in Google Scholar

29. D. Spittel, J. Poppe, C. Meerbach, C. Ziegler, S. G. Hickey, A. Eychmuller, ACS Nano 11 (2017) 12174.10.1021/acsnano.7b05300Search in Google Scholar

30. D. Yu, C. J. Wang, P. Guyot-Sionnest, Science 300 (2003) 1277.10.1126/science.1084424Search in Google Scholar

31. S. Sapra, D. D. Sarma, Phys. Rev. B 69 (2004) 125304.10.1103/PhysRevB.69.125304Search in Google Scholar

Received: 2018-03-14
Accepted: 2018-03-24
Published Online: 2018-04-27
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1178/html
Scroll to top button