Home TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
Article
Licensed
Unlicensed Requires Authentication

TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes

  • Isaac A. Safo , Carsten Dosche and Mehtap Oezaslan EMAIL logo
Published/Copyright: March 22, 2018

Abstract

Polyvinylpyrrolidone (PVP) polymer is among one of the widely used surfactants to prepare nano-materials with desired particle shape and particle size. The critical challenge is to remove PVP polymer from the metal surface without loss of the surface arrangement and particle agglomeration. Here, we developed a strategy to remove the surfactant PVP which prefers to form a multi-layer shell and thus blocks the catalytically active surface of the Pt nanocubes (6–7 nm). Since PVP is partially soluble in polar solvents, we studied four different solvent mixtures (volume ratio), (i) methanol/ethanol (3:1), (ii) acetone/water (3:1), (iii) ethanol/chloroform (3:1), and (iv) aqueous 0.1 M acetic acid by using transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV). Only, the washing process with methanol/ethanol and acetone/water generates Pt nanocubes with almost clean particle surface. Based on our FTIR results, a shift of the carbonyl band in IR spectrum was observed for methanol/ethanol-washed Pt nanocubes, indicating the coordination of the carbonyl oxygen of the PVP to platinum. The electrochemical experiments showed that the surface area of the methanol/ethanol-washed Pt nanocubes was increased by a factor of 14 compared to the unwashed, while an improvement of 11 times was achieved by washing in acetone/water. However, the CV profile still signifies the presence of strongly adsorbed PVP on the Pt surface. To remove the chemisorbed PVP, an electrochemical cleaning including 200 potential cycles between 0.06 and 1.00 V vs. RHE at 200 mV s−1 was applied. The potential cycling reveals the potential-controlled ad/desorption behavior of the PVP at the Pt surface. Altogether, we designed a cleaning procedure for surfactant-capped metal nanoparticles and provide insights into the interactions between the PVP and Pt surface.

Acknowledgments

Financial support from the Bundesministerium für Bildung und Forschung (BMBF, FKZ 03SF0539) is gratefully acknowledged. Furthermore, the funding of the JEOL JEM2100F HR-TEM by the DFG (INST 184/106-1 FUGG) is acknowledged. Our appreciation goes to Mr. Volker Stenhoff of DLR – Institute of Network Energy Systems, Oldenburg, Germany, for his assistance with the FTIR measurements.

References

1. D. Li, C. Wang, D. S. Strmcnik, D. V. Tripkovic, X. Sun, Y. Kang, M. Chi, J. D. Snyder, D. van der Vliet, Y. Tsai, V. R. Stamenkovic, S. Sun, N. M. Markovic, Energy Environ. Sci. 7 (2014) 4061.10.1039/C4EE01564ASearch in Google Scholar

2. T. Teranishi, R. Kurita, M. Miyake, J. Inorg. Organomet. Polym. 10 (2000) 145.10.1023/A:1009476128466Search in Google Scholar

3. H. Lee, RSC Adv. 4 (2014) 41017.10.1039/C4RA05958ASearch in Google Scholar

4. S. Neumann, S. Grotheer, J. Tielke, I. Schrader, J. Quinson, A. Zana, M. Oezaslan, M. Arenz, S. Kunz, J. Mater. Chem. A 5 (2017) 6140.10.1039/C7TA00628DSearch in Google Scholar

5. M. Oezaslan, F. Hasché, P. Strasser, J. Electrochem. Soc. 159 (2012) B394.10.1149/2.075204jesSearch in Google Scholar

6. M. Oezaslan, F. Hasché, P. Strasser, J. Electrochem. Soc. 159 (2012) B444.10.1149/2.106204jesSearch in Google Scholar

7. C.-K. Tsung, J. N. Kuhn, W. Huang, C. Aliaga, L.-I. Hung, G. A. Somorjai, P. Yang, J. Am. Chem. Soc. 131 (2009) 5816.10.1021/ja809936nSearch in Google Scholar PubMed

8. K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Dalton Trans. 44 (2015) 17883.10.1039/C5DT02964CSearch in Google Scholar PubMed

9. H. Song, F. Kim, S. Connor, G. A. Somorjai, P. Yang, J. Phys. Chem. B 109 (2005) 188.10.1021/jp0464775Search in Google Scholar PubMed

10. W. Liu, H. Wang, Surf. Sci. 648 (2016) 120.10.1016/j.susc.2015.10.023Search in Google Scholar

11. D. Li, C. Wang, D. Tripkovic, S. Sun, N. M. Markovic, V. R. Stamenkovic, ACS Catal. 2 (2012) 1358.10.1021/cs300219jSearch in Google Scholar

12. F. Hasché, M. Oezaslan, P. Strasser, ChemPhysChem 13 (2012) 828.10.1002/cphc.201100857Search in Google Scholar PubMed

13. I. A. Safo, M. Oezaslan, Electrochim. Acta 241 (2017) 544.10.1016/j.electacta.2017.04.118Search in Google Scholar

14. M. Crespo-Quesada, J.-M. Andanson, A. Yarulin, B. Lim, Y. Xia, L. Kiwi-Minsker, Langmuir 27 (2011) 7909.10.1021/la201007mSearch in Google Scholar PubMed

15. B. Gehl, A. Frömsdorf, V. Aleksandrovic, T. Schmidt, A. Pretorius, J.-I. Flege, S. Bernstorff, A. Rosenauer, J. Falta, H. Weller, M. Bäumer, Adv. Funct. Mater. 18 (2008) 2398.10.1002/adfm.200800274Search in Google Scholar

16. N. Naresh, F. G. S. Wasim, B. P. Ladewig, M. Neergat, J. Mater. Chem. A 1 (2013) 8553.10.1039/c3ta11183kSearch in Google Scholar

17. L. R. Baker, G. Kennedy, J. M. Krier, M. Van Spronsen, R. M. Onorato, G. A. Somorjai, Catal. Lett. 142 (2012) 1286.10.1007/s10562-012-0904-3Search in Google Scholar

18. J.-Y. Ye, G. A. Attard, A. Brew, Z.-Y. Zhou, S.-G. Sun, D. J. Morgan, D. J. Willock, J. Phys. Chem. C 120 (2016) 7532.10.1021/acs.jpcc.5b10910Search in Google Scholar

19. P. S. Fernández, D. S. Ferreira, C. A. Martins, H. E. Troiani, G. A. Camara, M. E. Martins, Electrochim. Acta 98 (2013) 25.10.1016/j.electacta.2013.02.129Search in Google Scholar

20. N. V. Long, M. Ohtaki, M. Nogami, T. D. Hien, Colloid Polym. Sci. 289 (2011) 1373.10.1007/s00396-011-2460-6Search in Google Scholar

21. F. Haaf, A. Sanner, F. Straub, Polym. J. 17 (1985) 143.10.1295/polymj.17.143Search in Google Scholar

22. B. Jirgensons, J. Polym. Sci. 8 (1952) 519.10.1002/pol.1952.120080508Search in Google Scholar

23. http://www.ashland.com/industries/energy/batteries/pvp-k-series, PVP Polyvinylpyrrolidone Polymers – Intermediates, solvents, monomers, polymers and specialty chemicals.Search in Google Scholar

24. N. Tanaka, K. Ito, H. Kitano, Macromol. Chem. Phys. 195 (1994) 3369.10.1002/macp.1994.021951008Search in Google Scholar

25. Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, G. A. Somorjai, J. Phys. Chem. B 110 (2006) 23052.10.1021/jp063338+Search in Google Scholar PubMed

26. Spektroskopische Methoden in der organischen Chemie, in: M. Hesse, H. Meier, B. Zeeh (Eds.): 7., überarbeitete Auflage ed., Georg Thieme Verlag, Stuttgart, New York (2005).Search in Google Scholar


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1147).


Received: 2018-02-09
Accepted: 2018-02-28
Published Online: 2018-03-22
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1147/html
Scroll to top button