Home Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
Article
Licensed
Unlicensed Requires Authentication

Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications

  • Christiane Falkenberg EMAIL logo , Markus Hummert , Rico Meerheim , Christoph Schünemann , Selina Olthof , Christian Körner , Moritz K. Riede and Karl Leo
Published/Copyright: March 16, 2018

Abstract

The effciency of organic solar cells is not only determined by their absorber system, but also strongly dependent on the performance of numerous interlayers and charge transport layers. In order to establish new custom-made materials, the study of structure-properties relationships is of great importance. This publication examines a series of naphthalenetetracarboxylic diimide molecules (NTCDI) with varying side-chain length intended for the use as n-dopable electron transport materials in organic solar cells. While all compounds basically share very similar absorption spectra and energy level positions in the desired range, the introduction of alkyl chains has a large impact on thin film growth and charge transport properties: both crystallization and the increase of conductivity by molecular doping are suppressed. This has a direct influence on the series resistance of corresponding solar cells comprising an NTCDI derivative as electron transport material (ETM) as it lowers the power conversion efficiency to ≪1%. In contrast, using the side-chain free compound it is possible to achive an efficiency of 6.5%, which is higher than the efficiency of a comparable device comprising n-doped C60 as standard ETM.

Acknowledgments

We thank Moritz Hein for performing OFET measurements, Felix Holzmüller for measuring EQE, and the Bundesministerium für Bildung und Forschung (BMBF) for funding this work within the scope of the Innoprofile project 03IE602.

References

1. R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Körner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeier, C. Uhrich, P. Bäuerle, J. Am. Chem. Soc. 134 (2012) 11064.10.1021/ja302320cSearch in Google Scholar PubMed

2. M. Schrader, R. Fitzner, M. Hein, C. Elschner, B. Baumeier, K. Leo, M. Riede, P. Bäuerle, D. Andrienko, J. Am. Chem. Soc. 134 (2012) 6052.10.1021/ja300851qSearch in Google Scholar PubMed

3. B. Männig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeier, H. Hoppe, D. Meissner, N. Sariciftci, I. Riedel, V. Dyakonov, J. Parisi, Appl. Phys. A Mater. Sci. Process. 79 (2004) 1.10.1007/s00339-003-2494-9Search in Google Scholar

4. C. Falkenberg, S. Olthof, R. Rieger, M. Baumgarten, K. Muellen, K. Leo, M. Riede, Sol. Energy Mater. Sol. Cells 95 (2011) 927.10.1016/j.solmat.2010.11.024Search in Google Scholar

5. C. Falkenberg, K. Leo, M. Riede, J. Appl. Phys. 110 (2011) 124509.10.1063/1.3664828Search in Google Scholar

6. S. Pfuetzner, A. Petrich, C. Malbrich, J. Meiss, M. Koch, M. K. Riede, M. Pfeier, K. Leo, Proc. of SPIE 6999 (2008) 69991M.Search in Google Scholar

7. C. Falkenberg, C. Uhrich, S. Olthof, B. Maennig, M. K. Riede, K. Leo, J. Appl. Phys. 104 (2008) 034506.10.1063/1.2963992Search in Google Scholar

8. R. Meerheim, C. Körner, K. Leo, Appl. Phys. Lett. 105 (2014) 063306.10.1063/1.4893012Search in Google Scholar

9. C. Falkenberg, Optimizing Organic Solar Cells – Transparent Electron Transport Materials for Improving the Device Performance, dissertation, TU Dresden (2011).Search in Google Scholar

10. V. Promarak, S. Saengsuwan, S. Jungsuttiwong, T. Sudyoadsuk, T. Keawin, Tetrahedron Lett. 48 (2007) 89.10.1016/j.tetlet.2006.11.007Search in Google Scholar

11. T. L. Fletcher, M. J. Namkung, J. Org. Chem. 23 (1958) 680.10.1021/jo01099a010Search in Google Scholar

12. N. G. Connelly, W. E. Geiger, Chem. Rev. 96 (1996) 877.10.1021/cr940053xSearch in Google Scholar PubMed

13. I. Horcas, R. Fernandez, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A. M. Baro, Rev. Sci. Instrum. 78 (2007) 013705.10.1063/1.2432410Search in Google Scholar PubMed

14. C. Schünemann, C. Elschner, A. A. Levin, M. Levichkova, K. Leo, M. Riede, Thin Solid Films 519 (2011) 3939.10.1016/j.tsf.2011.01.356Search in Google Scholar

15. L. Burtone, D. Ray, K. Leo, M. Riede, J. Appl. Phys. 111 (2012) 064503.10.1063/1.3693545Search in Google Scholar

16. L. Burtone, J. Fischer, K. Leo, M. Riede, Phys. Rev. B 87 (2013) 045432.10.1103/PhysRevB.87.045432Search in Google Scholar

17. Y. Maruyama, N. Iwasaki, Chem. Phys. Lett. 24 (1974) 26.10.1016/0009-2614(74)80205-8Search in Google Scholar

18. B. Männig, M. Pfeier, A. Nollau, X. Zhou, K. Leo, P. Simon, Phys. Rev. B 64 (2001) 195208.10.1103/PhysRevB.64.195208Search in Google Scholar

19. P. I. Djurovich, E. I. Mayo, S. R. Forrest, M. E. Thompson, Org. Electron. 10 (2009) 515.10.1016/j.orgel.2008.12.011Search in Google Scholar

20. M. Schwarze, B. D. Naab, M. Tietze, R. Scholz, P. Pahner, F. Bussolotti, S. Kera, D. Kasemann, Z. Bao, K. Leo, ACS Appl. Mater. Interfaces 10 (2018) 1340.10.1021/acsami.7b14034Search in Google Scholar PubMed

21. T. Menke, D. Ray, J. Meiss, K. Leo, M. Riede, Appl. Phys. Lett. 100 (2012) 093304.10.1063/1.3689778Search in Google Scholar

22. C. Falkenberg, C. Uhrich, B. Maennig, M. K. Riede, K. Leo, P. Soc. Photo-Opt. Ins. 6999 (2008) S9990.10.1117/12.782340Search in Google Scholar

23. W. Zhao, A. Kahn, J. Appl. Phys. 105 (2009) 123711.10.1063/1.3153962Search in Google Scholar

24. C. K. Chan, E. G. Kim, J. L. Bredas, A. Kahn, Adv. Funct. Mater. 16 (2006) 831.10.1002/adfm.200500402Search in Google Scholar

25. W. Tress, K. Leo, M. Riede, Adv. Funct. Mater. XX (2011) 1.Search in Google Scholar

26. T. Moench, P. Friederich, F. Holzmueller, B. Rutkowski, J. Benduhn, T. Strunk, C. Koerner, K. Vandewal, A. Czyrska-Filemonowicz, W. Wenzel, K. Leo, Adv. Energy Mater. 6 (2015) 1501280.10.1002/aenm.201501280Search in Google Scholar


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1077).


Received: 2017-11-18
Accepted: 2018-02-23
Published Online: 2018-03-16
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1077/html
Scroll to top button