Abstract
Inner shell excitation spectroscopy is a local probe of the unoccupied electronic structure in the immediate vicinity of the core excited atom. As such, one might expect the inner shell spectrum of a given unit (a molecular fragment or a repeat unit of a solid) to be largely independent of where that unit is located. This is often an implicit assumption in spectral analysis and analytical applications. However, there are situations where inner shell excitation spectra exhibit significant sensitivity to their local environment. Here I categorize the ways in which inner shell spectra are affected by their local environment, and give examples from a career dedicated to developing a better understanding of inner shell excitation spectroscopy, its experimental techniques, and applications.
Dedicated to: Eckart Rühl on the occasion of his 60th birthday.
Acknowledgements
I wish to acknowledge the many and diverse scientific collaborations I have had with Professor Eckart Rühl – we have over 25 joint publications, dating from 1989 through to 2014. It has been an honor to work together with him and his group, and a real pleasure to have him as a lifelong friend. The funding needed to acquire the ISEELS and STXM results presented in this article has been provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). STXM results have been recorded using several beamlines at the ALS (Lawrence Berkeley National Lab), funded by the Basic Energy Sciences division of the US Department of Energy, and with the ambient STXM on beamline 10ID1 at the Canadian Light Source (CLS, Saskatoon) which is funded by the Canada Foundation for Innovation, NSERC, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research.
References
1. A. P. Hitchcock, Phys. Scripta T31 (1990) 159.10.1088/0031-8949/1990/T31/023Search in Google Scholar
2. A. P. Hitchcock, J. Electron Spectroscopy Rel. Phenom. 112 (2000) 9.10.1016/S0368-2048(00)00200-0Search in Google Scholar
3. J. Stöhr, NEXAFS spectroscopy, Springer, Berlin (1992).10.1007/978-3-662-02853-7Search in Google Scholar
4. A. R. Milosavljević, A. Giuliani, C. Nicolas, Chapter 8, in: X-ray and Neutron Techniques for Nanomaterials Characterization, C. S. S. R. Kumar (Ed.), Springer-Verlag, Berlin (2016).Search in Google Scholar
5. M. B. Casu, T. Chassé, NEXAFS studies at surfaces, in: Handbook of Spectroscopy, 2nd ed. G. Gauglitz, D. S. Moore (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2014).10.1002/9783527654703.ch43Search in Google Scholar
6. X. Liu, W. Yang, Z. Liu, Adv. Mater 2 (2014) 7710.10.1002/adma.201304676Search in Google Scholar
7. T. Plashkevych, H. Privalov, H. Agren, V. Carravetta, K. Ruud, Chem. Phys 260 (2000) 11.10.1016/S0301-0104(00)00171-3Search in Google Scholar
8. Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. Å. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, A. Nilsson, Science 304 (2004) 995.10.1126/science.1096205Search in Google Scholar PubMed
9. M. Iannuzzi, J. Hutter, Phys. Chem. Chem. Phys. 9 (2007) 1599.10.1039/b615522gSearch in Google Scholar PubMed
10. M. S. Schöffler, J. Titze, N. Petridis, T. Jahnke, K. Cole, L. P. Schmidt, A. Czasch, D. Akoury, O. Jagutzki, J. B. Williams, N. A. Cherepkov, S. K. Semenov, C. W. McCurdy, T. N. Rescigno, C. L. Cocke, T. Osipo, S. Lee, M. H. Prior, A. Belkacem, A. L. Landers, H. Schmidt-Böcking, T. Weber, R. Dörner, Science 320 (2008) 920.10.1126/science.1154989Search in Google Scholar PubMed
11. L. Triguero, L. G. M. Pettersson, H. Agren, Phys. Rev. B 58 (1998) 8097.10.1103/PhysRevB.58.8097Search in Google Scholar
12. M. Newville, Rev. Mineral. Geochem. 78 (2014) 33.10.2138/rmg.2014.78.2Search in Google Scholar
13. I. N. Levine, Quantum Mechanics, 7th ed. Pearson, NY (2013).Search in Google Scholar
14. F. Sette, J. Stöhr, A. P. Hitchcock, J. Chem. Phys. 81 (1984) 4906.10.1063/1.447528Search in Google Scholar
15. G. Cooper, M. Gordon, D. Tulumello, C. C. Turci, K. Kaznatcheev, A. P. Hitchcock, J. Electron Spectroscopy Rel. Phenom. 137–140 (2004) 795.10.1016/j.elspec.2004.02.102Search in Google Scholar
16. J. R. Lawrence, G. D. W. Swerhone, G. G. Leppard, T. Araki, X. Zhang, M. M. West, A. P. Hitchcock, Appl. Environ. Microbiol. 69 (2003) 5543.10.1128/AEM.69.9.5543-5554.2003Search in Google Scholar PubMed PubMed Central
17. R. F. Egerton, Rep. Prog. Phys. 72 (2009) 016502.10.1088/0034-4885/72/1/016502Search in Google Scholar
18. R. McLaren, S. A. C. Clark, I. Ishii, A. P. Hitchcock, Phys. Rev. A 36 (1987) 1683.10.1103/PhysRevA.36.1683Search in Google Scholar
19. Hitchcock. 2017. database: http://unicorn.mcmaster.ca/corex/cedb-title.html; bibliography: http://unicorn.mcmaster.ca/xrm-biblio/xrm_bib.html. Accessed 20 October 2017.Search in Google Scholar
20. H. Ade, A. P. Hitchcock, Polymer 49 (2008) 643.10.1016/j.polymer.2007.10.030Search in Google Scholar
21. A. P. Hitchcock, Chapter 22, in: Volume II of the Handbook on Nanoscopy, G. Van Tendeloo, D. Van Dyck, S. J. Pennycook (Eds.), Wiley, New York (2012), p. 745.10.1002/9783527641864.ch22Search in Google Scholar
22. W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson, P. Naulleau, Opt Express 20 (2012) 9777.10.1364/OE.20.009777Search in Google Scholar PubMed
23. A. L. D. Kilcoyne, T. Tylisczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, H. Ade, J. Synchrotron Radiat. 10 (2003) 125.10.1107/S0909049502017739Search in Google Scholar
24. T. Warwick, H. Ade, A. L. D. Kilcoyne, M. Kritscher, T. Tylisczcak, S. Fakra, A. P. Hitchcock, P. Hitchcock, H. A. Padmore, J. Synchrotron Radiat. 9 (2002) 254.10.1107/S0909049502005502Search in Google Scholar
25. K. V. Kaznatcheev, Ch. Karunakaran, U. D. Lanke, S. G. Urquhart, M. Obst, A.P. Hitchcock, Nucl. Inst. Meth. A 582 (2007) 96.10.1016/j.nima.2007.08.083Search in Google Scholar
26. C. Jacobsen, S. Wirick, G. Flynn, C. Zimba, J. Microscopy 197 (2000)173.10.1046/j.1365-2818.2000.00640.xSearch in Google Scholar
27. A. P. Hitchcock, aXis2000 is written in Interactive Data Language (IDL). It is available free for non-commercial use from http://unicorn.mcmaster.ca/aXis2000.html. Accessed 20 October 2017.Search in Google Scholar
28. J. Liu, Y. Zhang, M. I. Ionescu, R. Li, X. Sun, Appl. Surf. Sci. 257 (2011) 7837.10.1016/j.apsusc.2011.04.041Search in Google Scholar
29. E. Rühl, C. Heinzel, A. P. Hitchcock, H. Baumgärtel, J. Chem. Phys. 98 (1993) 2653.10.1063/1.464146Search in Google Scholar
30. E. Rühl, C. Heinzel, A. P. Hitchcock, H. Schmeltz, C. Reynaud, H. Baumgärtel, W. Drube, R. Frahm, J. Chem. Phys. 98 (1993) 6820.10.1063/1.464773Search in Google Scholar
31. M. O. Krause, C. D. Caldwell, A. Menzel, S. Benzaud, J. Jiminez-Mier, J. Electron Spectroscopy Rel. Phenom. 79 (1996) 241.10.1016/0368-2048(96)02846-0Search in Google Scholar
32. A. P. Hitchcock, C. E. Brion, J. Electron Spectroscopy Rel. Phenom. 18 (1980) 1.10.1016/0368-2048(80)80001-6Search in Google Scholar
33. E. Rühl, A. P. Hitchcock, Chem. Phys. 154 (1991) 323.10.1016/0301-0104(91)80082-SSearch in Google Scholar
34. K. L. Harding, S. Kalirai, R. Hayes, V. Ju, G. Cooper, A. P. Hitchcock, M. R. Thompson, Chem. Phys. 461 (2015) 117.10.1016/j.chemphys.2015.09.004Search in Google Scholar
35. K. J. Randall, W. Eberhardt, J. Feldhaus, W. Erlebach, A. M. Bradshaw, Z. Xu, P. D. Johnson, Y. Ma, Nucl. Inst. Meth. A 319 (1992) 101.10.1016/0168-9002(92)90538-FSearch in Google Scholar
36. A. Kivimaki, B. Kempgens, M. N. Piancastelli, M. Neeb, K. Maier, A, Rudel, U. Hergerhahn, A. M. Bradshaw, J. Electron Spectroscopy Rel. Phenom. 93 (1998) 81.10.1016/S0368-2048(98)00159-5Search in Google Scholar
37. E. Rühl, Int. J. Mass Spectrom. 229 (2003) 117.10.1016/j.ijms.2003.08.006Search in Google Scholar
38. R. Flesch, A. A. Pavlychev, J. J. Neville, J. Blumberg, M. Kuhlmann, W. Tappe, F. Senf, O. Schwarzkopf, A. P. Hitchcock, E. Rühl, Phys. Rev. Lett. 86 (2001) 3767.10.1103/PhysRevLett.86.3767Search in Google Scholar PubMed
39. R. Flesch, N. Kosugi, I. Bradeanu, J. J. Neville, E. Rühl, J. Chem. Phys. 121 (2004) 8343.10.1063/1.1804180Search in Google Scholar PubMed
40. J. Zhou, J. Wang, H. Liu, M. N. Banis, X. Sun, T. K. Sham, J. Phys. Chem. Lett. 1 (2010) 1709.10.1021/jz100376vSearch in Google Scholar
41. S. Stamboula, PhD thesis, McMaster University, Hamilton, Canada, 2018.Search in Google Scholar
42. R. Flesch, E. Serdaroglu, F. Blobner, P. Feulner, X. O. Brykalova, A. A. Pavlychev, N. Kosugi, E. Rühl, Phys. Chem. Chem. Phys. 14 (2012) 9397.10.1039/c2cp23451cSearch in Google Scholar PubMed
43. R. Flesch, E. Seardarogu, X. O. Brykalova, E. I. Kan, E. S. Klyushina, Yu. S. Krivosenko, A. A. Pavlychev, E. Rühl, J. Chem. Phys. 138 (2013) 144302.10.1063/1.4798975Search in Google Scholar PubMed
44. R. K. Lam, A. H. England, A. T. Sheardy, O. Shih, J. W. Smith, A. M. Rizzuto, D. Prendergast, R. J. Saykally, Chem. Phys. Lett. 614 (2014) 282.10.1016/j.cplett.2014.09.052Search in Google Scholar
45. S. G. Urquhart, H. Ade, J. Phys. Chem. B 106 (2002) 8531.10.1021/jp0255379Search in Google Scholar
46. M. L. Gordon, G. Cooper, C. Morin, T. Araki, C. C. Turci, K. Kaznatcheev, A. P. Hitchcock, J. Phys. Chem A 107 (2003) 6144.10.1021/jp0344390Search in Google Scholar
47. E Otero, S. G. Urquhart, J. Phys. Chem A 110 (2006) 12121.10.1021/jp064082aSearch in Google Scholar PubMed
48. Y. Zubavichus, A. Shaporenko, M. Grunze, M. Zharnikov, J. Phys. Chem. B 110 (2006) 3420.10.1021/jp056118pSearch in Google Scholar PubMed
49. J. Stewart-Ornstein, A. P. Hitchcock, D. Hernàndez-Cruz, P. Henklein, J. Overhage, K. Hilpert, J. Hale, R. E. W. Hancock, J. Phys. Chem. B 111 (2007) 7691.10.1021/jp0720993Search in Google Scholar PubMed
50. Y. Zubavichus, A. Shaporenko, M. Grunze, M. Zharnikov, J. Phys. Chem. A 109 (2005) 6998.10.1021/jp0535846Search in Google Scholar PubMed
51. Y. Zubavichus, A. Shaporenko, M. L. Grunze, M. Zharnikov, J. Phys. Chem. B 112 (2008) 4478.10.1021/jp801248nSearch in Google Scholar PubMed
52. B. O. Leung, A. P. Hitchcock, J. L. Brash, A. Scholl, A. Doran, P. Henklein, J. Overhage, K. Hilpert, J. D. Hale, R. E. W. Hancock, Biointerphases 3 (2008) F27.10.1116/1.2956637Search in Google Scholar PubMed
53. C. P. Schwartz, J. S. Uejio, A. M. Duffin, A. H. England, D. N. Kelly, D. Prendergast, R. J. Saykally, Proc. Nat. Acad. Sci. 107 (2010) 14008.10.1073/pnas.1006435107Search in Google Scholar PubMed PubMed Central
54. X. Liu, C. H. Jang, F. Zheng, A. Jürgensen, J. D. Denlinger, K. A. Dickson, R. T. Raines, N. L. Abbott, F. J. Himpsel, Langmuir 22 (2006) 7719.10.1021/la060988wSearch in Google Scholar PubMed
55. J. S. Stevens, L. K. Newton, C. Jaye, C. A. Muryn, D. A. Fischer, S. L. M. Schroeder, Cryst. Growth Des. 15 (2015) 1776.10.1021/cg5018278Search in Google Scholar
56. J. Wang, G. Cooper, D. Tulumello, A. P. Hitchcock, J. Phys. Chem. A 109 (2005) 10886.10.1021/jp054693nSearch in Google Scholar
57. S. D. Perera, S. G. Urquhart, J. Phys. Chem A 121 (2017) 4907.10.1021/acs.jpca.7b03823Search in Google Scholar
58. I. Ishii, A. P. Hitchcock, J. Chem. Phys. 87 (1987) 830.10.1063/1.453290Search in Google Scholar
59. D. A. Outka, J. Stohr, R. J. Madix, H. H. Rotermund, B. Hermsmeier, J. Solomon, Surf. Sci. 185 (1987) 53.10.1016/S0039-6028(87)80613-1Search in Google Scholar
60. R. J. Jakobsen, Y. Mieawa, J. W. Brasch, Spectrochim. Acta A 23 (1967) 2199.10.1016/0584-8539(67)80107-7Search in Google Scholar
61. I. Ishii, A. P. Hitchcock, J. Electron Spectroscopy Rel. Phenom. 46 (1988) 55.10.1016/0368-2048(88)80005-7Search in Google Scholar
62. A. Ganesan, F. Wang, J. Chem. Phys. 131 (2009) 044321.10.1063/1.3187033Search in Google Scholar PubMed
63. G. Olivieri, A. Cossaro, E. Capria, L. Benevoli, M. Coreno, M. De Simone, K. C. Prince, G. Kladnik, D. Cvetko, B. Fraboni, A. Morgante, L. Floreano, A. Fraleoni-Morgera, J. Phys. Chem. C 119 (2015) 121.10.1021/jp5100878Search in Google Scholar
64. C. D. Cappa, J. D. Smith, W. R. Wilson, R. J. Saykally, J. Phys.: Condens. Matter 20 (2008) 205105.10.1088/0953-8984/20/20/205105Search in Google Scholar PubMed
65. H. Bluhm, D. Frank Ogletree, C. S. Fadley, Z. Hussain, M. Salmeron, J. Phys. C 14 (2002) L221.10.1088/0953-8984/14/8/108Search in Google Scholar
66. I. Ishii, R. McLaren, A. P. Hitchcock, M. B. Robin, J. Chem. Phys. 87 (1987) 4344.10.1063/1.452893Search in Google Scholar
67. K. R. Wilson, B. S. Rude, T. Catalano, R. D. Schaller, J. G. Tobin, D. T. Co, R. J. Saykally, J. Phys. Chem. B 105 (2001) 3346.10.1021/jp010132uSearch in Google Scholar
68. A. Nilsson, D. Nordlund, I. Waluyo, N. Huang, H. Ogasawara, S. Kaya, U. Bergmann, L.-Å. Näslund, H. Öström, Ph. Wernet, K. J. Andersson, T. Schiros, L. G. M. Pettersson, J. Electron Spectroscopy Rel. Phenom. 177 (2010) 99.10.1016/j.elspec.2010.02.005Search in Google Scholar
69. I. Hjelte, M. N. Piancastelli, R. Fink, Reinhold, O. Björneholm, M. Bässler, R. Feifel, A. Giertz, K. Wiesner, A. Ausmees, C. Miron, Catalin, H. Wang, S. Sorensen, S. Svensson, Chem. Phys. Lett. 334 (2001) 151.10.1016/S0009-2614(00)01434-2Search in Google Scholar
70. B. Brena, D. Nordlund, M. Odelius, H. Ogasawara, A. Nilsson, L. G. M. Pettersson, Phys. Rev. Lett. 93 (2004) 148302.10.1103/PhysRevLett.93.148302Search in Google Scholar PubMed
71. C. J. Sahle, J. Niskanen, K. Gilmore, S. Jahn, J. Electron Spectroscopy Rel. Phenom. (2017) in press. doi: 10.1016/j.elspec.2017.09.003.10.1016/j.elspec.2017.09.002Search in Google Scholar
72. C. J. Sahle, C. Sternemann, S. Schmidt, S. Lehtola, S. Jahn, S. Simonelli, S. Huotari, M. Hakala, T. Pylkkänen, A. Nyrow, K. Mende, M. Tolan, K. Hämäläinen, M. Wilke, Proc. Nat. Acad. Sci. 110 (2013) 6301.10.1073/pnas.1220301110Search in Google Scholar PubMed PubMed Central
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Eckart Rühl zum 60. Geburtstag
- Effect of Moisture on Methane Permeation Through Fermenter Covering Films in Biogas Plants
- The Effect of Natural Osmolyte Mixtures on the Temperature-Pressure Stability of the Protein RNase A
- Composition, Mixing State and Water Affinity of Meteoric Smoke Analogue Nanoparticles Produced in a Non-Thermal Microwave Plasma Source
- Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation
- White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake
- Distinction of Structural Isomers of Benzenediamin and Difluorobenzene by Means of Chirped Femtosecond Laser Ionization Mass Spectrometry
- Intermolecular Interactions of Pyridine in Liquid Phase and Aqueous Solution Studied by Soft X-ray Absorption Spectroscopy
- Influence of Local Environment on Inner Shell Excitation Spectra, Studied by Electron and X-ray Spectroscopy and Spectromicroscopy
- Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation
- Fabrication of Protein Microparticles and Microcapsules with Biomolecular Tools
- Catalysis by Metallic Nanoparticles in Solution: Thermosensitive Microgels as Nanoreactors
- Temperature-Enhanced Follicular Penetration of Thermoresponsive Nanogels
- Influence of Organic Ligands on the Surface Oxidation State and Magnetic Properties of Iron Oxide Particles
- VUV Dissociative Photoionization of Quinoline in the 7–26 eV Photon Energy Range
- Spin-labeling of Dexamethasone: Radical Stability vs. Temporal Resolution of EPR-Spectroscopy on Biological Samples
- Band Bending at the Gold (Au)/Boron Carbide-Based Semiconductor Interface
- Spectral Distribution of Oscillator Strength for Core-to-Valence Transitions probed by using X-ray Absorption and Total Electron Yield Modes
- Protease-mediated Inflammation: An In Vitro Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems
Articles in the same Issue
- Frontmatter
- Eckart Rühl zum 60. Geburtstag
- Effect of Moisture on Methane Permeation Through Fermenter Covering Films in Biogas Plants
- The Effect of Natural Osmolyte Mixtures on the Temperature-Pressure Stability of the Protein RNase A
- Composition, Mixing State and Water Affinity of Meteoric Smoke Analogue Nanoparticles Produced in a Non-Thermal Microwave Plasma Source
- Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation
- White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake
- Distinction of Structural Isomers of Benzenediamin and Difluorobenzene by Means of Chirped Femtosecond Laser Ionization Mass Spectrometry
- Intermolecular Interactions of Pyridine in Liquid Phase and Aqueous Solution Studied by Soft X-ray Absorption Spectroscopy
- Influence of Local Environment on Inner Shell Excitation Spectra, Studied by Electron and X-ray Spectroscopy and Spectromicroscopy
- Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation
- Fabrication of Protein Microparticles and Microcapsules with Biomolecular Tools
- Catalysis by Metallic Nanoparticles in Solution: Thermosensitive Microgels as Nanoreactors
- Temperature-Enhanced Follicular Penetration of Thermoresponsive Nanogels
- Influence of Organic Ligands on the Surface Oxidation State and Magnetic Properties of Iron Oxide Particles
- VUV Dissociative Photoionization of Quinoline in the 7–26 eV Photon Energy Range
- Spin-labeling of Dexamethasone: Radical Stability vs. Temporal Resolution of EPR-Spectroscopy on Biological Samples
- Band Bending at the Gold (Au)/Boron Carbide-Based Semiconductor Interface
- Spectral Distribution of Oscillator Strength for Core-to-Valence Transitions probed by using X-ray Absorption and Total Electron Yield Modes
- Protease-mediated Inflammation: An In Vitro Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems