Abstract
Conductivity and fluorescence probe techniques have been employed to study the micellar behavior of bile salts i.e. sodium cholate (1–20 mmol⋅kg−1) and sodium deoxycholate (0.5–10.0 mmol⋅kg−1) in aqueous solutions of maltodextrin (0.0, 0.5, 1.1, and 1.6 mmol⋅kg−1) at different temperatures. The influence of maltodextrin on the micellization behavior of bile salts has been determined in terms of critical micelle concentration (CMC) values obtained from conductivity measurement. The variation in CMC values has been discussed by considering the alteration in the hydrophobic environment of maltodextrin-sodium cholate/sodium deoxycholate complex imparted by the carbohydrate molecules. In order to substantiate the CMC values determined from conductivity method, the fluorescence probe study of aqueous sodium cholate and sodium deoxycholate solutions in presence of fluorescent, pyrene has also been carried. The CMC values obtained from both techniques are in full agreement with each other. Moreover, application of charged pseudo-phase separation model has been made to discuss the thermodynamics of the system.
Acknowledgments
Vivek Sharma and Kuldeep Singh thank Himachal Pradesh University, Shimla for the award of Junior Research Fellowship (F.No. 1-3/2013-HPU (DS) 5111 and No.1-3/2016-HPU(DS), respectively). Financial support from UGC-SAP (DRS-I) (No. F.540/3/DRS/2010 (SAP-1)) to Department of Chemistry, HPU is also acknowledged.
Conflict of interest: The authors declare no competing financial interest.
References
1. S. Mukhopadhyay, U. Maitra, Curr. Sci. 87 (2004) 1666.Search in Google Scholar
2. E. Bauer, S. Jakob, R. Mosenthin, Asian-Aust. J. Anim. Sci. 18 (2005) 282.10.5713/ajas.2005.282Search in Google Scholar
3. J. M. Valderrama, P. Wilde, A. Macierzanka, A. Mackie, Adv. Colloid Interface Sci. 165 (2011) 36.10.1016/j.cis.2010.12.002Search in Google Scholar PubMed
4. M. Posa, D. Cirin, V. Krstonosic, Chemical Eng. Sci. 98 (2013) 195.10.1016/j.ces.2013.05.042Search in Google Scholar
5. R. Baskin, L. D. Frost, Colloids Surf. B 62 (2008) 238.10.1016/j.colsurfb.2007.10.008Search in Google Scholar
6. M. Posa, V. Guzsvany, J. Csanadi, Surf. B 74 (2009) 84.10.1016/j.colsurfb.2009.06.029Search in Google Scholar
7. H. Sugioka, Y. Moroi, Biochim. Biophys. Acta 1394 (1998) 99.10.1016/S0005-2760(98)00090-3Search in Google Scholar PubMed
8. P. E. Luner, D. Van Der Kamp, Int. J. Pharm. 212 (2001) 81.10.1016/S0378-5173(00)00602-5Search in Google Scholar PubMed
9. P. Venkatesan, Y. Cheng, D. Kahne, J. Am. Chem. Soc. 116 (1994) 6955.10.1021/ja00094a068Search in Google Scholar
10. D. Madenci, S. U. Egelhaaf, Curr. Opin. Colloid Interface Sci. 15 (2010) 109.10.1016/j.cocis.2009.11.010Search in Google Scholar
11. V. Patel, B. Bharatiya, D. Ray, V. K. Aswal, P. Bahadur, J. Colloid Interface Sci. 441 (2015) 106.10.1016/j.jcis.2014.11.027Search in Google Scholar PubMed
12. C. E. Lin, W. C. Lin, W. C. Chiou, J. Chromatogr. A 722 (1996) 333.10.1016/0021-9673(95)00715-6Search in Google Scholar
13. I. Benito, M. A. Garcia, C. Monge, J. M. Saz, M. L. Marina, Colloids Surf. A 125 (1997) 221.10.1016/S0927-7757(97)00014-9Search in Google Scholar
14. E. Fuguet, C. Rafols, M. Roses, E. Bosch, Analytica Chimica Acta 548 (2005) 95.10.1016/j.aca.2005.05.069Search in Google Scholar
15. K. Kumar, B. S. Patial, S. Chauhan, J. Chem. Thermodyn. 82 (2015) 25.10.1016/j.jct.2014.10.014Search in Google Scholar
16. W. J. Claffey, R. T. Holzbach, Biochemistry 20 (1981) 415.10.1021/bi00505a029Search in Google Scholar PubMed
17. A. Coello, F. Meijide, E. R. Nunez, J. V. Tato, J. Pharm. Sci. 85 (1996) 9.10.1021/js950326jSearch in Google Scholar PubMed
18. M. A. Hammad, B. W. Muller, Eur. J. Pharma. Biopharma. 46 (1998) 361.10.1016/S0939-6411(98)00037-XSearch in Google Scholar
19. B. Natalini, R. Sardella, A. Gioiello, F. Ianni, A. Michele, M. Marinozzi, J. Pharma. Biomed. Anal. 87 (2014) 62.10.1016/j.jpba.2013.06.029Search in Google Scholar PubMed
20. D. Kaushal, D. S. Rana, M. Kumar, K. Singh, K. Singh, S. Chauhan, A. Umar, Z. Phys. Chem. 233 (2019) 413.10.1515/zpch-2017-1014Search in Google Scholar
21. M. Kumar, S. Kant, D. Kaushal, Z. Phys. Chem. 233 (2019) 255.10.1515/zpch-2018-1151Search in Google Scholar
22. A. Ali, N. H. Ansari, U. Farooq, S. Tasneem, F. Nabi, Z. Phys. Chem. 233 (2019) 167.10.1515/zpch-2017-1070Search in Google Scholar
23. J. H. Crowe, L. M. Crowe, A. E. Oliver, A. E. Tsvetkova, W. Wolkers, F. Tablin, Cryobiology 43 (2001) 89.10.1006/cryo.2001.2353Search in Google Scholar PubMed
24. B. R. Brown, S. P. Ziemer, T. L. Niederhauser, E. M. Woolley, J. Chem. Thermodyn. 37 (2005) 843.10.1016/j.jct.2004.12.004Search in Google Scholar
25. T. C. Bai, G. B. Yan, Carbohydr. Res. 338 (2003) 2921.10.1016/j.carres.2003.08.006Search in Google Scholar PubMed
26. C. F. Chau, Y. L. Huang, Agric J. Food Chem. 51 (2003) 2615.10.1021/jf025919bSearch in Google Scholar PubMed
27. P. Shukla, B. I. Pletschke, Advances in Enzyme Biotechnology, Springer, New Delhi (2013).10.1007/978-81-322-1094-8Search in Google Scholar
28. K. Kumar, S. Chauhan, Fluid Phase Equilib. 394 (2015) 165.10.1016/j.fluid.2015.03.012Search in Google Scholar
29. K. Kumar, S. Chauhan, Thermochim. Acta 606 (2015) 12.10.1016/j.tca.2015.02.014Search in Google Scholar
30. S. Chauhan, V. Sharma, K. Singh, M. S. Chauhan, K. Singh, J. Mol. Liq. 222 (2016) 67.10.1016/j.molliq.2016.07.020Search in Google Scholar
31. S. Chauhan, K. Singh, C. N. Sundaresan, J. Mol. Liq. 222 (2016) 67.10.1016/j.molliq.2016.07.020Search in Google Scholar
32. R. Amin Md, S. Mahub, S. Hidayathulla, M. Alam Md, A. Houque Md, M. A. Rub, J. Mol. Liq. 266 (2018) 692.10.1016/j.molliq.2018.07.008Search in Google Scholar
33. K. Sharma, S. Chauhan, Colloids Surf. A 453 (2014) 78.10.1016/j.colsurfa.2014.04.003Search in Google Scholar
34. D. M. Cirin, M. M. Posa, V. S. Krstonosic, Chem. Cent. J. 5 (2011) 89.10.1186/1752-153X-5-89Search in Google Scholar PubMed
35. D. M. Cirin, M. M. Posa, V. S. Krstonosic, Ind. Eng. Chem. Res. 51 (2012) 3670.10.1021/ie202373zSearch in Google Scholar
36. K. H. Kang, K. U. Kim, K. H. Lim, Colloids Surf. A 189 (2001) 113.10.1016/S0927-7757(01)00577-5Search in Google Scholar
37. U. Subuddhi, A. K. Mishra, Colloids Surf. B 57 (2007) 102.10.1016/j.colsurfb.2007.01.009Search in Google Scholar
38. A. N. Diaz, F. G. Sanchez, A. G. Pareja, Colloids Surf. A 142 (1998) 27.10.1016/S0927-7757(98)00370-7Search in Google Scholar
39. R. Shaw, W. H. Elliott, B. G. Barisas, Mikrochim. Acta 105 (1991) 137.10.1007/BF01243540Search in Google Scholar
40. R. Ninomiya, K. Matsuoka, Y. Moroi, Biochimica et Biophysica Acta 1634 (2003) 116.10.1016/j.bbalip.2003.09.003Search in Google Scholar PubMed
41. R. D. Vold, M. J. Vold, Colloid and Interface Chemistry, Addison-Wesley, Reading, MA (1983).Search in Google Scholar
42. S. Chauhan, J. Jyoti, K. Sharma, K. Kumar, Fluid Phase Equilib. 375 (2014) 286.10.1016/j.fluid.2014.05.020Search in Google Scholar
43. K. R. Acharya, S. C. Bhattacharyya, S. P. Moulik, J. Photochem. Photobio. A 122 (1999) 47.10.1016/S1010-6030(99)00003-9Search in Google Scholar
44. R. Rodriguez, A. Gonzalez-Perez, J. L. Del Castillo, J. Czapkiewicz, J. Colloid Interface Sci. 250 (2002) 438.10.1006/jcis.2002.8362Search in Google Scholar PubMed
45. A. Gonzalez-Perez, J. L. Del Castillo, J. Czapkiewicz, J. R. Rodriguez, Colloids Surf. A 232 (2004) 183.10.1016/j.colsurfa.2003.10.018Search in Google Scholar
46. S. Chauhan, K. Sharma, J. Chem. Thermodyn. 71 (2014) 205.10.1016/j.jct.2013.12.019Search in Google Scholar
47. S. Chauhan, M. Kaur, K. Kumar, M. S. Chauhan, J. Chem. Thermodyn. 78 (2014) 175.10.1016/j.jct.2014.07.003Search in Google Scholar
48. M. J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York (1989).Search in Google Scholar
49. F. Akhtar, M. A. Hoque, M. Khan, J. Chem. Thermodyn. 40 (2008) 1082.10.1016/j.jct.2008.03.001Search in Google Scholar
50. M. A. Hoque, M. A. Khan, M. D. Hossain, J. Chem. Thermodyn. 60 (2013) 71.10.1016/j.jct.2013.01.001Search in Google Scholar
51. M. A. Hoque, M. D. Hossain, M. A. Khan, J. Chem. Thermodyn. 63 (2013) 135.10.1016/j.jct.2013.04.007Search in Google Scholar
52. S. K. Mehta, S. Chaudhary, K. K. Bhasin, R. Kumar, M. Aratono, Colloids Surf. A 304 (2007) 88.10.1016/j.colsurfa.2007.04.031Search in Google Scholar
53. A. G. Perez, J. L. D. Castillo, J. Czapkiewicz, J. R. Rodrigue, Colloid Polym. Sci. 280 (2002) 503.10.1007/s00396-001-0635-2Search in Google Scholar
54. S. Chauhan, K. Sharma, M. S. Chauhan, A. Umar, Adv. Sci. Eng. Med. 5 (2013) 720.10.1166/asem.2013.1291Search in Google Scholar
55. J. Aguiar, P. Carpana, J. A. Molina-Boliver, C. C. Ruiz, J. Colloid Interface Sci. 258 (2003) 116.10.1016/S0021-9797(02)00082-6Search in Google Scholar
56. S. Gouin, X. X. Zhu, Langmuir 14 (1998) 4025.10.1021/la971155wSearch in Google Scholar
57. M. S. Bakshi, G. Kaur, J. Colloid Interface Sci. 289 (2005) 551.10.1016/j.jcis.2005.03.078Search in Google Scholar PubMed
58. G. B. Ray, I. Chakraborty, S. P. Moulik, J. Colloid Interface Sci. 294 (2006) 248.10.1016/j.jcis.2005.07.006Search in Google Scholar PubMed
59. G. B. Ray, I. Chakraborty, S. Ghosh, S. P. Moulik, J. Colloid Interface Sci. 307 (2007) 543.10.1016/j.jcis.2006.11.055Search in Google Scholar PubMed
60. V. Bhardwaj, P. Sharma, S. Chauhan, Thermochim. Acta 566 (2013) 155.10.1016/j.tca.2013.05.037Search in Google Scholar
61. S. Aktar, R. Molla Md, S. Mahbub, M. A. Rub, A. Hoque Md, D. M. S. Islam, J Disp. Sci. Tech. (2018). DOI: 10.1080/01932691.2018.1472005.Search in Google Scholar
62. J. M. del Rio, C. Pombo, G. Prieto, V. Mosquera, F. Sarmiento, J. Colloid Interface Sci. 172 (1995) 137.10.1006/jcis.1995.1235Search in Google Scholar
63. H. N. Singh, S. Swarup, S. M. Saleem, J. Colloid Interface Sci. 68 (1979) 128.10.1016/0021-9797(79)90264-9Search in Google Scholar
64. S. K. Mehta, K. K. Bhasin, R. Chauhan, S. Dham, Colloids Surf. A 255 (2005) 153.10.1016/j.colsurfa.2004.12.038Search in Google Scholar
65. A. Maestre, P. Guardado, M. L. Moya, J. Chem. Eng. Data 59 (2014) 433.10.1021/je400903nSearch in Google Scholar
66. B. Lindmann, H. Wennerstrom, M. J. S. Dewar, K. Hafner, E. Heilbronner, S. Ito, J. M. Lehn, K. Niedenzu, C. W. Rees, K. Schafer, G. Wittig, (Eds.). Topics in Current Chemistry, Springer–Verlag, New York (1980).Search in Google Scholar
67. T. M. Perger, M. B. Roga, J. Colloid Interface Sci. 313 (2007) 288.10.1016/j.jcis.2007.04.043Search in Google Scholar PubMed
68. S. Chauhan, R. Singh, K. Sharma, K. Kumar, J. Surfactants. Deterg. 18 (2015) 225.10.1007/s11743-014-1613-2Search in Google Scholar
69. S. Bharadwaj, S. K. Sar, J. Surfactants Deterg. 17 (2014) 143.10.1007/s11743-012-1424-2Search in Google Scholar
70. J. J. H. Nusselder, J. B. Engberts, J. Colloid Interface Sci. 148 (1992) 353.10.1016/0021-9797(92)90174-KSearch in Google Scholar
71. A. K. Rakshit, B. Sharma, Colloid Polym. Sci. 281 (2003) 45.10.1007/s00396-002-0743-7Search in Google Scholar
72. G. Sugihara, M. Hisatomi, J. Colloid Interface Sci. 219 (1999) 31.10.1006/jcis.1999.6378Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1060).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
 - Hydrogen Bond Interaction of Ascorbic Acid with Urea: Experimental and Theoretical Study
 - The Thermodynamic and Binding Studies of Hg+2 Ions with Egg Protein by Polarographic and pH Metric Techniques
 - Effect of Maltodextrin and Temperature on Micellar Behavior of Bile Salts in Aqueous Medium: Conductometric and Spectrofluorimetric Studies
 - Probing Inclusion Complexes of Pentoxifylline and Pralidoxim inside Cyclic Oligosaccharides by Physicochemical Methodologies
 - Solubility and Solution Thermodynamics of Baricitinib in Six Different Pharmaceutically Used Solvents at Different Temperatures
 - One-Pot Synthesis and Rheological Study of Cationic Poly (3-acrylamidopropyltrimethyl ammoniumchloride) P(APTMACl) Polymer Hydrogels
 - Synthesis and Characterization of BaAl2O4 Catalyst and its Photocatalytic Activity Towards Degradation of Methylene Blue Dye
 - Chemically Synthesized Hierarchical Flower like ZnO Microstructures
 - Statistical Modeling, Optimization and Kinetics of Mn2+ Adsorption in Aqueous Solution Using a Biosorbent
 
Articles in the same Issue
- Frontmatter
 - Hydrogen Bond Interaction of Ascorbic Acid with Urea: Experimental and Theoretical Study
 - The Thermodynamic and Binding Studies of Hg+2 Ions with Egg Protein by Polarographic and pH Metric Techniques
 - Effect of Maltodextrin and Temperature on Micellar Behavior of Bile Salts in Aqueous Medium: Conductometric and Spectrofluorimetric Studies
 - Probing Inclusion Complexes of Pentoxifylline and Pralidoxim inside Cyclic Oligosaccharides by Physicochemical Methodologies
 - Solubility and Solution Thermodynamics of Baricitinib in Six Different Pharmaceutically Used Solvents at Different Temperatures
 - One-Pot Synthesis and Rheological Study of Cationic Poly (3-acrylamidopropyltrimethyl ammoniumchloride) P(APTMACl) Polymer Hydrogels
 - Synthesis and Characterization of BaAl2O4 Catalyst and its Photocatalytic Activity Towards Degradation of Methylene Blue Dye
 - Chemically Synthesized Hierarchical Flower like ZnO Microstructures
 - Statistical Modeling, Optimization and Kinetics of Mn2+ Adsorption in Aqueous Solution Using a Biosorbent