Startseite Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I

  • Ivan Shelaev , Michael Gorka , Anton Savitsky EMAIL logo , Vasily Kurashov , Mahir Mamedov , Fedor Gostev , Klaus Möbius EMAIL logo , Victor Nadtochenko EMAIL logo , John Golbeck EMAIL logo und Alexey Semenov EMAIL logo
Veröffentlicht/Copyright: 3. November 2016

Abstract

The effect of dehydration on the kinetics of forward electron transfer (ET) has been studied in cyanobacterial photosystem I (PS I) complexes in a trehalose glassy matrix by time-resolved optical and EPR spectroscopies in the 100 fs to 1 ms time domain. The kinetics of the flash-induced absorption changes in the subnanosecond time domain due to primary and secondary charge separation steps were monitored by pump–probe laser spectroscopy with 20-fs low-energy pump pulses centered at 720 nm. The back-reaction kinetics of P700 were measured by high-field time-resolved EPR spectroscopy and the forward kinetics of A1A/A1BFX by time-resolved optical spectroscopy at 480 nm. The kinetics of the primary ET reactions to form the primary P700+A0 and the secondary P700+A1 ion radical pairs were not affected by dehydration in the trehalose matrix, while the yield of the P700+A1 was decreased by ~20%. Forward ET from the phylloquinone molecules in the A1A and A1B sites to the iron–sulfur cluster FX slowed from ~220 ns and ~20 ns in solution to ~13 μs and ~80 ns, respectively. However, as shown by EPR spectroscopy, the ~15 μs kinetic phase also contains a small contribution from the recombination between A1B and P700+. These data reveal that the initial ET reactions from P700 to secondary phylloquinone acceptors in the A- and B-branches of cofactors (A1A and A1B) remain unaffected whereas ET beyond A1A and A1B is slowed or prevented by constrained protein dynamics due to the dry trehalose glass matrix.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


Award Identifier / Grant number: 15-04-04252

Award Identifier / Grant number: 14-14-00789

Funding statement: This work was financially supported by the Russian Foundation for Basic Research, grant 15-04-04252 (to A.Yu.S.) and Russian Science Foundation, grant 14-14-00789 (to A.Yu.S. and V.N.), by the President of RF grant MK-6515.2015.4 (to I.S.), by the US National Science Foundation, grant MCB-1613022 (to J.G.) and by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (to A.S.) and the Max Planck Society (to A.S. and K.M.). K.M. acknowledges sustaining support by the Free University of Berlin. We want to thank Giovanni Venturoli (University of Bologna) for stimulating and fruitful discussions, Dmitry Cherepanov and Georgy Milanovsky for their assistance in application of CONTIN software, and Anastasia Petrova for preparation of PS I complexes (all Moscow State University).

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research, grant 15-04-04252 (to A.Yu.S.) and Russian Science Foundation, grant 14-14-00789 (to A.Yu.S. and V.N.), by the President of RF grant MK-6515.2015.4 (to I.S.), by the US National Science Foundation, grant MCB-1613022 (to J.G.) and by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (to A.S.) and the Max Planck Society (to A.S. and K.M.). K.M. acknowledges sustaining support by the Free University of Berlin. We want to thank Giovanni Venturoli (University of Bologna) for stimulating and fruitful discussions, Dmitry Cherepanov and Georgy Milanovsky for their assistance in application of CONTIN software, and Anastasia Petrova for preparation of PS I complexes (all Moscow State University).

References

1. J. H. Golbeck and D. A. Bryant, in: Curr. Top. Bioenerg, vol. 16, (Ed. C. P. Lee), Academic Press, San Diego (1991), P. 83.10.1016/B978-0-12-152516-3.50006-1Suche in Google Scholar

2. P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger, and N. Krauss, Nature 411 (2001) 909.10.1038/35082000Suche in Google Scholar PubMed

3. M. Guergova-Kuras, B. Boudreaux, A. Joliot, P. Joliot, and K. Redding, Proc. Natl. Acad. Sci. USA. 98 (2001) 4437.10.1073/pnas.081078898Suche in Google Scholar PubMed PubMed Central

4. S. Santabarbara, P. Heathcote, and M. C. W. Evans, Biochim. Biophys. Acta. 1708 (2005) 283.10.1016/j.bbabio.2005.05.001Suche in Google Scholar PubMed

5. N. Srinivasan and J. H. Golbeck, Biochim. Biophys. Acta. 1787 (2009) 1057.10.1016/j.bbabio.2009.04.010Suche in Google Scholar PubMed

6. J. Sun, S. Hao, M. Radle, W. Xu, I. Shelaev, V. Nadtochenko, V. Shuvalov, A. Semenov, H. Gordon, A. van der Est, and J. H. Golbeck, Biochim. Biophys. Acta. 1837 (2014) 1362.10.1016/j.bbabio.2014.04.004Suche in Google Scholar PubMed

7. G. E. Milanovsky, V. V. Ptushenko, J. H. Golbeck, A. Y. Semenov, and D. A. Cherepanov, Biochim. Biophys. Acta. 1837 (2014) 1472.10.1016/j.bbabio.2014.03.001Suche in Google Scholar PubMed

8. H. Makita and G. Hastings, Febs Lett. 589 (2015) 1412.10.1016/j.febslet.2015.04.048Suche in Google Scholar PubMed

9. I. V. Shelaev, F. E. Gostev, M. D. Mamedov, O. M. Sarkisov, V. A. Nadtochenko, V. A. Shuvalov and A. Y. Semenov, Biochim. Biophys. Acta. 1797 (2010) 1410.10.1016/j.bbabio.2010.02.026Suche in Google Scholar PubMed

10. S. Savikhin, W. Xu, P. Martinsson, P. R. Chitnis, and W. S. Struve, Biochem. 40 (2001) 9282.10.1021/bi0104165Suche in Google Scholar PubMed

11. K. Brettel, Febs Lett. 239 (1988) 93.10.1016/0014-5793(88)80552-0Suche in Google Scholar

12. P. Setif and H. Bottin, Biochem. 28 (1989) 2689.10.1021/bi00432a049Suche in Google Scholar

13. R. Agalarov and K. Brettel, Biochim. Biophys. Acta. 1604 (2003) 7.10.1016/S0005-2728(03)00024-0Suche in Google Scholar

14. I. R. Vassiliev, Y. S. Jung, M. D. Mamedov, A. Y. Semenov and J. H. Golbeck, Biophys. J. 72 (1997) 301.10.1016/S0006-3495(97)78669-7Suche in Google Scholar

15. K. Brettel and W. Leibl, Biochim. Biophys. Acta. 1507 (2001) 100.10.1016/S0005-2728(01)00202-XSuche in Google Scholar

16. J. F. Carpenter, L. M. Crowe and J. H. Crowe, Biochim. Biophys. Acta. 923 (1987) 109.10.1016/0304-4165(87)90133-4Suche in Google Scholar

17. E. C. Lopez-Diez and S. Bone, Biochim. Biophys. Acta. 1673 (2004) 139.10.1016/j.bbagen.2004.04.010Suche in Google Scholar

18. N. K. Jain and I. Roy, Protein Sci. 18 (2009) 24.10.1002/pro.3Suche in Google Scholar

19. S. Ohtake and Y. J. Wang, J. Pharm. Sci. 100 (2011) 2020.10.1002/jps.22458Suche in Google Scholar

20. J. H. Crowe, J. F. Carpenter and L. M. Crowe, Ann. Rev. Physiol. 60 (1998) 73.10.1146/annurev.physiol.60.1.73Suche in Google Scholar

21. L. M. Crowe, Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131 (2002) 505.10.1016/S1095-6433(01)00503-7Suche in Google Scholar

22. G. Palazzo, A. Mallardi, A. Hochkoeppler, L. Cordone and G. Venturoli, Biophys. J. 82 (2002) 558.10.1016/S0006-3495(02)75421-0Suche in Google Scholar

23. F. Francia, M. Dezi, A. Mallardi, G. Palazzo, L. Cordone, and G. Venturoli, J. Am. Chem. Soc. 130 (2008) 10240.10.1021/ja801801pSuche in Google Scholar

24. F. Francia, G. Palazzo, A. Mallardi, L. Cordone, and G. Venturoli, Biophys. J. 85 (2003) 2760.10.1016/S0006-3495(03)74698-0Suche in Google Scholar

25. F. Francia, G. Palazzo, A. Mallardi, L. Cordone, and G. Venturoli, Biochim. Biophys. Acta. 1658 (2004) 50.10.1016/j.bbabio.2004.04.016Suche in Google Scholar

26. D. Kleinfeld, M. Y. Okamura, and G. Feher, Biochem. 23 (1984) 5780.10.1021/bi00319a017Suche in Google Scholar

27. B. H. McMahon, J. D. Muller, C. A. Wraight, and G. U. Nienhaus, Biophys. J. 74 (1998) 2567.10.1016/S0006-3495(98)77964-0Suche in Google Scholar

28. L. Cordone, G. Cottone, A. Cupane, A. Emanuele, S. Giuffrida, and M. Levantino, Curr. Org. Chem. 19 (2015) 1684.10.2174/1385272819666150429232426Suche in Google Scholar

29. L. Cordone, G. Cottone, S. Giuffrida, G. Palazzo, G. Venturoli, and C. Viappiani, Biochim. Biophys. Acta. 1749 (2005) 252.10.1016/j.bbapap.2005.03.004Suche in Google Scholar PubMed

30. M. Malferrari, A. Savitsky, M. D. Mamedov, G. E. Milanovsky, W. Lubitz, K. Möbius, A. Y. Semenov, and G. Venturoli, Biochim. Biophys. Acta. 1857 (2016) 1440.10.1016/j.bbabio.2016.05.001Suche in Google Scholar PubMed

31. E. Schlodder, K. Falkenberg, M. Gergeleit, and K. Brettel, Biochem. 37 (1998) 9466.10.1021/bi973182rSuche in Google Scholar PubMed

32. G. Z. Shen, J. D. Zhao, S. K. Reimer, M. L. Antonkine, Q. Cai, S. M. Weiland, J. H. Golbeck, and D. A. Bryant, J. Biol. Chem. 277 (2002) 20343.10.1074/jbc.M201103200Suche in Google Scholar

33. D. I. Arnon, Plant Physiol. 24 (1949) 1.10.1104/pp.24.1.1Suche in Google Scholar

34. M. Malferrari, A. Nalepa, G. Venturoli, F. Francia, W. Lubitz, K. Möbius, and A. Savitsky, Phys. Chem. Chem. Phys. 16 (2014) 9831.10.1039/C3CP54043JSuche in Google Scholar

35. M. Malferrari, F. Francia, and G. Venturoli, J. Phys. Chem. B. 119 (2015) 13600.10.1021/acs.jpcb.5b02986Suche in Google Scholar

36. L. Greenspan, J. Res. Natl. Stand. Sec. A. 81 (1977) 89.10.6028/jres.081A.011Suche in Google Scholar

37. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, Phys. Rev. A. 59 (1999) 2369.10.1103/PhysRevA.59.2369Suche in Google Scholar

38. I. V. Shelaev, F. E. Gostev, M. I. Vishnev, A. Y. Shkuropatov, V. V. Ptushenko, M. D. Mamedov, O. M. Sarkisov, V. A. Nadtochenko, A. Y. Semenov, and V. A. Shuvalov, J. Photochem. Photobiol. B. 104 (2011) 44.10.1016/j.jphotobiol.2011.02.003Suche in Google Scholar

39. A. L. Dobryakov, J. L. P. Lustres, S. A. Kovalenko, and N. P. Ernsting, Chem. Phys. 347 (2008) 127.10.1016/j.chemphys.2007.11.003Suche in Google Scholar

40. S. W. Provencher, Comput. Phys. Commun. 27 (1982) 229.10.1016/0010-4655(82)90174-6Suche in Google Scholar

41. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchs, Phys. Chem. Chem. Phys. 7 (2005) 19.10.1039/B412180ESuche in Google Scholar PubMed

42. V. A. Shuvalov, A. M. Nuijs, H. J. Vangorkom, H. W. J. Smit, and L. N. M. Duysens, Biochim. Biophys. Acta. 850 (1986) 319.10.1016/0005-2728(86)90187-8Suche in Google Scholar

43. G. Hastings, F. A. M. Kleinherenbrink, S. Lin, T. J. McHugh, and R. E. Blankenship, Biochem. 33 (1994) 3193.10.1021/bi00177a008Suche in Google Scholar

44. D. H. Mi, S. Lin, and R. E. Blankenship, Biochem. 38 (1999) 15231.10.1021/bi991139tSuche in Google Scholar

45. S. Savikhin and J. H. Golbeck, in: Advances in Photosynthesis and Respiration: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, (Ed. J. H. Golbeck) Springer, Dordrecht (2006), P. 155.Suche in Google Scholar

46. C. Ruckebusch, S. Aloise, L. Blanchet, J. P. Huvenne, and G. Buntinx, Chemometr. Intell. Lab. 91 (2008) 17.10.1016/j.chemolab.2007.05.007Suche in Google Scholar

47. P. Joliot and A. Joliot, Biochem. 38 (1999) 11130.10.1021/bi990857cSuche in Google Scholar

48. P. Setif, H. Bottin, and P. Mathis, Biochim. Biophys. Acta. 808 (1985) 112.10.1016/0005-2728(85)90033-7Suche in Google Scholar

49. A. K. Salikhov, Y. N. Molin, R. Z. Sagdeev, and A. L. Buchachenko, Spin Polarization and Magnetic Effects in Chemical Reactions, Elsevier, Amsterdam (1984).Suche in Google Scholar

50. K. M. Salikhov, C. H. Bock, and D. Stehlik, Appl. Magn. Reson. 1 (1990) 195.10.1007/BF03166155Suche in Google Scholar

51. K. M. Salikhov, Y. E. Kandrashkin, and A. K. Salikhov, Appl. Magn. Reson. 3 (1992) 199.10.1007/BF03166790Suche in Google Scholar

52. K. M. Salikhov, J. Schlüpmann, M. Plato, and K. Möbius, Chem. Phys. 215 (1997) 23.10.1016/S0301-0104(96)00342-4Suche in Google Scholar

53. A. J. Hoff, Q. Rev. Biophys. 17 (1984) 153.10.1017/S0033583500005308Suche in Google Scholar PubMed

54. D. Stehlik, C. H. Bock, and J. Petersen, J. Phys. Chem. 93 (1989) 1612.10.1021/j100341a084Suche in Google Scholar

55. P. J. Hore, in: Advanced EPR. Applications in Biology and Biochem, (Ed. A. J. Hoff) Elsevier, Amsterdam (1989), P. 405.10.1016/B978-0-444-88050-5.50017-3Suche in Google Scholar

56. S. S. Eaton and G. R. Eaton, in: Biological Magnetic Resonance, (Eds. L. J. Berliner, S. S. Eaton, and G. R. Eaton) Kluwer/Plenum, New York (2000), P. 24.Suche in Google Scholar

57. I. Sieckmann, K. Brettel, C. Bock, A. Vanderest, and D. Stehlik, Biochem. 32 (1993) 4842.10.1021/bi00069a020Suche in Google Scholar

58. D. E. Budil and M. C. Thurnauer, Biochim. Biophys. Acta. 1057 (1991) 1.10.1016/S0005-2728(05)80081-7Suche in Google Scholar

59. A. Savitsky, O. Gopta, M. Mamedov, J. H. Golbeck, A. Tikhonov, K. Möbius, and A. Semenov, Appl. Magn. Reson. 37 (2010) 85.10.1007/s00723-009-0052-0Suche in Google Scholar

Received: 2016-7-18
Accepted: 2016-10-5
Published Online: 2016-11-3
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Editorial Review
  4. From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science
  5. On Relations Between Singlet and Triplet Recombination Yields for Singlet and Triplet Precursors
  6. The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
  7. Reaction Operators for Radical Pairs. The Exactly Solvable Model
  8. Estimation of the Fraction of Spin-Correlated Radical Ion Pairs in Irradiated Alkanes using Magnetosensitive Recombination Luminescence from Exciplexes Generated upon Recombination of a Probe Pair
  9. Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences
  10. A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads
  11. Solvent Radical Anions in Irradiated Aliphatic Ketones and Esters as Observed Using Time-Resolved Magnetic Field Effects in the Recombination Fluorescence
  12. Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
  13. Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR
  14. Light-Stimulated Generation of Free Radicals by Quinones-Chelators
  15. Influence of C2-Methylation of Imidazolium Based Ionic Liquids on Photoinduced Spin Dynamics of the Dissolved ZnTPP Studied by Time-Resolved EPR
  16. ESR Study of Electron States in Ge/Si Heterostructures with Nanodisc Shaped Quantum Dots
  17. Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study
  18. Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers
Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0860/html?lang=de
Button zum nach oben scrollen