Light-Stimulated Generation of Free Radicals by Quinones-Chelators
-
Irina D. Markova
, Nikolay E. Polyakov, Olga Yu. Selyutina
, Lidia G. Fedenok , Kirill Yu. Fedotov , Irina A. Slepneva , Tatyana V. Leshina , Andrey G. Pokrovsky , Nadezhda V. Vasilieva and Lev M. Weiner
Abstract
The role of metal ions in the mechanism of light-stimulated redox activity of potential anticancer agent 2-phenyl-4-(butylamino)naphtha[2,3-h]quinoline-7,12-dione (Qc) has been studied by CIDNP (chemically induced dynamic nuclear polarization) and EPR methods. The photo-induced oxidation of NADH and its synthetic analog – substituted dihydropyridine (DHP) – by quinone Qc was used as a model. The Qc capability of producing chelating complexes with divalent metal ions of Fe, Zn and Ca was studied quantitatively by optical absorption spectroscopy. A significant decrease of electrochemical reduction potential of Qc (ΔE=0.4−0.6 eV for ACN and ACN/PBS solutions) in chelating complexes and in protonated form of Qc was observed. A pronounced increase in efficiency of DHP oxidation in chelating complexes with Zn2+ and Ca2+ ions compared with free Qc was demonstrated. The yields of free radicals, including reactive oxygen species (ROS) and reaction products, were a few times higher than those in the absence of metal ions. Application of such chelating compounds to enhance ROS generation looks very promising for anti-cancer therapy, including the photodynamic therapy.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday.
Acknowledgements
This study is supported by grant 14-03-00192 from the Russian Foundation for Basic Research. L. M. Weiner thanks for financial support by Russian Ministry of Education and Science project 5-100.
References
1. S. J. Dixon, B. R. Stockwell, Nat. Chem. Biol. 10 (2014) 9.10.1038/nchembio.1416Search in Google Scholar PubMed
2. F. R. Bertuchi, R. Papai, M. Ujevic, I. Gaubeur, G. Cerchiaro, Anal. Met. 6 (2014) 8488.10.1039/C4AY01912ASearch in Google Scholar
3. N. E. Polyakov, A. L. Focsan, M. K. Bowman, L. D. Kispert, J. Phys. Chem. B. 114 (2010) 16968.10.1021/jp109039vSearch in Google Scholar PubMed PubMed Central
4. G. Erdem, C. Öner, A. M. Önal, D. Kisakürek, A. Ögüs, J. Biosci. 19 (1994) 9.10.1007/BF02703463Search in Google Scholar
5. P. Kovacic, J. A. Osuna, Curr. Pharm. Des. 6 (2000) 277.10.2174/1381612003401046Search in Google Scholar PubMed
6. S. Rahimipour, G. Gescheidt, I. Bilkis, M. Fridkin, L. Weiner, Appl. Magn. Reson. 37 (2010) 629.10.1007/s00723-009-0099-ySearch in Google Scholar
7. B. Zhao, Y. Yang, X. Wang, Z. Chong, Nucl. Acids Res. 42 (2014) 1593.10.1093/nar/gkt1090Search in Google Scholar PubMed PubMed Central
8. N. M. Kogan, M. Schlesinger, M. Peters, G. Marincheva, R. Beeri, R. Mechoulam, J. Pharmacol. Exp. Ther. 322 (2007) 646.10.1124/jpet.107.120865Search in Google Scholar PubMed
9. E. Feinstein, E. Canaani, L. M. Weiner, Biochemistry 32 (1993) 13156.10.1021/bi00211a026Search in Google Scholar PubMed
10. S. I. Dikalov, G. V. Rumyantseva, A. V. Piskunov, L. M. Weiner, Biochemistry 31 (1992) 8947.10.1021/bi00152a034Search in Google Scholar PubMed
11. R. Pinkus, L. M. Weiner, V. Daniel, Biochemistry 34 (1995) 81.10.1021/bi00001a010Search in Google Scholar
12. L. M. Weiner, Method. Enzymol. 233 (1994) 92.10.1016/S0076-6879(94)33011-5Search in Google Scholar
13. I. Goncharov, L. Weiner, E. Fogel, Neuroscience 134 (2005) 567.10.1016/j.neuroscience.2005.04.042Search in Google Scholar
14. B. Kalyanaraman, K. M. Morehouse, R. P. Mason, Arch. Biochem. Biophys. 286 (1991) 164.10.1016/0003-9861(91)90023-CSearch in Google Scholar
15. F. H. Fry, C. Jacob, Curr. Pharm. Des. 12 (2006) 4479.10.2174/138161206779010512Search in Google Scholar
16. G. J. Fan, X. L. Jin, Y. P. Qian, Q. Wang, Chem. Eur. J. 15 (2009) 12889.10.1002/chem.200901627Search in Google Scholar
17. F. N. Akladios, S. D. Andrew, C. J. Parkinson, Bioorg. Med. Chem. 23 (2015) 3097.10.1016/j.bmc.2015.05.006Search in Google Scholar
18. E. D. Weinberg, Eur. J. Cancer Prev. 5 (1996) 19.10.1016/1062-1458(96)00095-5Search in Google Scholar
19. Yu. N. Molin, K. M. Salikhov, R. Z. Sagdeev, A. L. Buchachenko (Eds.): Spin Polarization and Magnetic Field Effects in Radical. Akademiai Kiado, Budapest (1984).Search in Google Scholar
20. F. I. Ataullahanov, A. M. Jabotinsky, Biofizika 20 (1975) 596.10.1037/0013525Search in Google Scholar
21. N. E. Polyakov, M. B. Taraban, T. V. Leshina, Photochem. Photobiol. 80 (2004) 565.10.1562/0031-8655(2004)080<0565:PSOTIO>2.0.CO;2Search in Google Scholar
22. N. E. Polyakov, V. K. Khan, M. B. Taraban, T. V. Leshina, O. A. Luzina, N. F. Salakhutdinov, G. A. Tolstikov, Org. Biomol. Chem. 3 (2005) 881.10.1039/b416133eSearch in Google Scholar
23. C. Hadjur, G. Wagnieres, F. Ihringer, P. Monnier, H. J. van den Bergh, Photochem. Photobiol. B. 38 (1997) 196.10.1016/S1011-1344(96)07440-4Search in Google Scholar
24. K. R. Weishaupt, C. J. Gomer, T. J. Dougherty, Cancer Res. 36 (1976) 2326–2329.Search in Google Scholar
25. L. Weiner, Y. Mazur, J. Chem. Soc. Perkin Trans. 2 (1992) 1439.10.1039/p29920001439Search in Google Scholar
26. L. Weiner, E. Roth, Y. Mazur, I, Silman, Biochemistry 38 (1998) 11401.10.1021/bi991147+Search in Google Scholar
27. G. R. Buettner, L. W. Oberley, Biochem. Biophys. Res. Commun. 83 (1978) 69.10.1016/0006-291X(78)90398-4Search in Google Scholar
28. M. Goez, Concepts Magn. Res. 7 (1995) 263.10.1002/cmr.1820070403Search in Google Scholar
29. N. V. Vasilieva, I. G. Irtegova, V. A. Loskutov, L. A. Shundrin, Mendeleev Communications 23 (2013) 334336.10.1016/j.mencom.2013.11.010Search in Google Scholar
30. I. Andreu, D. Neshchadin, S. N. Batchelor, M. A. Miranda, G. Gescheidt, Molecular Physics 111 (2013) 2992.10.1080/00268976.2013.809805Search in Google Scholar
31. M. Perchanova, H. Kurreck, A. Berg, J. Phys. Chem. A. 119 (2015) 8117.10.1021/acs.jpca.5b04760Search in Google Scholar PubMed
32. A. S. Lukas, P. J. Bushard, E. A. Weiss, M. R. Wasielewski, J. Am. Chem. Soc. 125 (2003) 3921.10.1021/ja029062aSearch in Google Scholar PubMed
33. E. A. Weiss, M. A. Ratner, M. R. Wasielewski, J. Phys. Chem. A. 107 (2003) 3639.10.1021/jp0224315Search in Google Scholar
34. S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am. Chem. Soc. 109 (1987) 305.10.1021/ja00236a003Search in Google Scholar
35. M. Tachibana, S. Terokubota, M. Iwaizumi, Chem. Lett. 5 (1987) 933.10.1246/cl.1987.933Search in Google Scholar
36. J. D. Petke, P. Butter, G. M. Maggiora, Int. J. Quant. Chem. 27 (1985) 71.10.1002/qua.560270106Search in Google Scholar
37. P. J. Hore, A. Volbeda, K. Dijkstra, R. Kaptein, J. Am. Chem. Soc. 104 (1982) 6262.10.1021/ja00387a017Search in Google Scholar
38. M. B. Taraban, A. I. Kruppa, N. E. Polyakov, T. V. Leshina, V. Lūsis, D. G. Muceniece, J. Photochem. Photobiol. A Chem. 73 (1993) 151.10.1016/1010-6030(93)80044-ASearch in Google Scholar
39. A. I. Kruppa, M. B. Taraban, N. E. Polyakov, T. V. Leshina, V. Lūsis, D. Muceniece, G. Duburs. J. Photochem. Photobiol. A Chem. 73 (1993) 159.10.1016/1010-6030(93)80045-BSearch in Google Scholar
40. N. E. Polyakov, M. B. Taraban, A. I. Kruppa, N. I. Avdievich, T. V. Leshina, V. Lūsis, D. Muceniece, G. Duburs, J. Photochem. Photobiol. A Chem. 74 (1993) 75.10.1016/1010-6030(93)80153-ZSearch in Google Scholar
41. N. E. Polyakov, M. B. Taraban, A. I. Kruppa, T. V. Leshina, V. Lūsis, D. Muceniece, G. Duburs, J. Photochem. Photobiol. A Chem. 73 (1993) 151.10.1016/1010-6030(93)80044-ASearch in Google Scholar
42. L. Sibous, E. Bentouhami, M. A. Khan, J. Inorg. Chem. 2013 (2013) 1.10.1155/2013/104979Search in Google Scholar
43. I. F. Tannock, D. Rotin, Cancer Res. 49 (1989) 4373.Search in Google Scholar
44. K. Barbusinski, Ecol. Chem. Eng. 16 (2009) 347.Search in Google Scholar
45. J. F. Perez-Benito, J. Phys. Chem. A. 108 (2004) 4853.10.1021/jp031339lSearch in Google Scholar
46. A. Karioti, A. R. Bilia, Int. J. Mol. Sci. 11 (2010) 562.10.3390/ijms11020562Search in Google Scholar PubMed PubMed Central
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Editorial Review
- From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science
- On Relations Between Singlet and Triplet Recombination Yields for Singlet and Triplet Precursors
- The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
- Reaction Operators for Radical Pairs. The Exactly Solvable Model
- Estimation of the Fraction of Spin-Correlated Radical Ion Pairs in Irradiated Alkanes using Magnetosensitive Recombination Luminescence from Exciplexes Generated upon Recombination of a Probe Pair
- Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences
- A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads
- Solvent Radical Anions in Irradiated Aliphatic Ketones and Esters as Observed Using Time-Resolved Magnetic Field Effects in the Recombination Fluorescence
- Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
- Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR
- Light-Stimulated Generation of Free Radicals by Quinones-Chelators
- Influence of C2-Methylation of Imidazolium Based Ionic Liquids on Photoinduced Spin Dynamics of the Dissolved ZnTPP Studied by Time-Resolved EPR
- ESR Study of Electron States in Ge/Si Heterostructures with Nanodisc Shaped Quantum Dots
- Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study
- Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers
Articles in the same Issue
- Frontmatter
- Preface
- Editorial Review
- From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science
- On Relations Between Singlet and Triplet Recombination Yields for Singlet and Triplet Precursors
- The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
- Reaction Operators for Radical Pairs. The Exactly Solvable Model
- Estimation of the Fraction of Spin-Correlated Radical Ion Pairs in Irradiated Alkanes using Magnetosensitive Recombination Luminescence from Exciplexes Generated upon Recombination of a Probe Pair
- Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences
- A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads
- Solvent Radical Anions in Irradiated Aliphatic Ketones and Esters as Observed Using Time-Resolved Magnetic Field Effects in the Recombination Fluorescence
- Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
- Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR
- Light-Stimulated Generation of Free Radicals by Quinones-Chelators
- Influence of C2-Methylation of Imidazolium Based Ionic Liquids on Photoinduced Spin Dynamics of the Dissolved ZnTPP Studied by Time-Resolved EPR
- ESR Study of Electron States in Ge/Si Heterostructures with Nanodisc Shaped Quantum Dots
- Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study
- Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers