Startseite The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination

  • Nikita N. Lukzen , Johannes H. Klein , Christoph Lambert und Ulrich E. Steiner EMAIL logo
Veröffentlicht/Copyright: 24. September 2016

Abstract

In recent work from this group (J. H. Klein et al. J. Am. Chem. Soc. 2015, 137, 11011), the magnetic field dependent charge recombination kinetics in donor/Ir-complex/acceptor triads has been determined with outstanding accuracy and reproducibility. The field-dependent kinetics has been analyzed in terms of a classical reaction scheme including the field-independent rate parameters of singlet recombination (rate constant kS) and S/T0 mixing (rate constant kST0) and the field-dependent rate constant k±(B) connecting central and outer Zeeman levels. In the present work, the extraction of k± from the experimental data is more precisely defined and the appearance of a “coherent” and “incoherent” regime of spin motion in a double log plot of k± vs. B is confirmed. The experimental decay curves have been reproduced by a full quantum dynamical model based on the stochastic Liouville equation, which was solved numerically, taking into account isotropic hyperfine coupling with five nuclear spins (1 N on donor radical, 4 H on acceptor radical) and anisotropic hyperfine coupling with the nitrogen nucleus at the donor radical. The results of the quantum calculations serve as a rigorous basis of interpreting the classical parameter k±. Furthermore, it is demonstrated that the incoherent part of spin motion is essential for a full understanding of the charge recombination kinetics even in the “coherent” regime.


Dedicated to: Professor Kev Salikhov on the occasion of his 80th birthday.


Acknowledgements

We gratefully acknowledge the help of Prof. Dr. Christine Peter and Dr. Stefan Gerlach in accessing the Scientific Compute Cluster (SCC) at the University of Konstanz. N. L. thanks the Alexander-von-Humboldt Foundation for financial support allowing his visit to Konstanz. N. L. is grateful to the Russian Foundation for Basic Research (grant No. 14-03-00453 А). The work at Würzburg was supported by the DFG (GRK 2112).

References

1. G. L. Closs, J. Am. Chem. Soc. 91 (1969) 4552.10.1021/ja01044a043Suche in Google Scholar

2. R. Kaptein, J. L. Oosterhoff, Chem. Phys. Lett. 4 (1969) 195.10.1016/0009-2614(69)80098-9Suche in Google Scholar

3. F. J. Adrian, J. Chem. Phys. 53 (1970) 3374.10.1063/1.1674491Suche in Google Scholar

4. F. J. Adrian, J. Chem. Phys. 54 (1971) 3912.10.1063/1.1675446Suche in Google Scholar

5. P. W. Atkins, R. C. Gurd, K. A. McLauchlan, A. F. Simpson, Chem. Phys. Lett. 8 (1971) 55.10.1016/0009-2614(71)80574-2Suche in Google Scholar

6. J. B. Pedersen, J. H. Freed, J.Chem.Phys. 59 (1973) 2869.10.1063/1.1680418Suche in Google Scholar

7. J. B. Pedersen, J. H. Freed, J. Chem. Phys. 62 (1974) 1706.10.1063/1.430695Suche in Google Scholar

8. R. Haberkorn, Chem. Phys. 19 (1977) 165.10.1016/0301-0104(77)85129-XSuche in Google Scholar

9. R. Haberkorn, Chem. Phys. 26 (1977) 35.10.1016/0301-0104(77)87090-0Suche in Google Scholar

10. T. Haberkorn, Chem. Phys. 24 (1977) 111.10.1016/0301-0104(77)85084-2Suche in Google Scholar

11. Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 4616.10.1063/1.433719Suche in Google Scholar

12. H. J. Werner, Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 646.10.1063/1.434868Suche in Google Scholar

13. K. Schulten, P. G. Wolynes, J. Chem. Phys. 68 (1978) 3292.10.1063/1.436135Suche in Google Scholar

14. W. Knapp, K. Schulten, J. Chem. Phys. 71 (1979) 1878.10.1063/1.438541Suche in Google Scholar

15. K. M. Salikhov, Theor. Exp. Chem. (1977) 13.10.1007/BF00520804Suche in Google Scholar

16. K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, A. L. Buchachenko, Spin polarization and Magnetic Effects in Radical Reactions, Elsevier: Amsterdam, The Netherlands, 1984.Suche in Google Scholar

17. U. E. Steiner, T. Ulrich, Chem. Rev. 89 (1989) 51.10.1021/cr00091a003Suche in Google Scholar

18. J. Wang, C. J. Doubleday, N. J. Turro, J. Phys. Chem. 93 (1989) 4780.10.1021/j100349a019Suche in Google Scholar

19. Y. Tanimoto, M. Takashima, K. Hasegawa, M. Itoh, Chem. Phys. Lett. 137 (1987) 330.10.1016/0009-2614(87)80894-1Suche in Google Scholar

20. A. Weller, H. Staerk, R. Treichel, Royal Chem. Soc. Far. Discuss. 78 (1984) 271.10.1039/dc9847800271Suche in Google Scholar

21. H. Staerk, W. Kühnle, R. Treichel, A. Weller, Chem. Phys. Lett. 118 (1985) 19.10.1016/0009-2614(85)85257-XSuche in Google Scholar

22. H. Heitele, M. E. Michel-Beyerle, P. Finckh, Chem. Phys. Lett. 134 (1987) 273.10.1016/0009-2614(87)87135-XSuche in Google Scholar

23. F. J. J. de Kanter, J. A. den Hollander, A. H. Huizer., R. Kaptein, Mol. Phys. 34 (1977) 857.10.1080/00268977700102161Suche in Google Scholar

24. R. Bittl, K. Schulten, Chem. Phys. Lett. 173 (1990) 387.10.1016/0009-2614(90)85289-OSuche in Google Scholar

25. U. Werner, H. Staerk, J Phys Chem-Us 97 (1993) 9274.10.1021/j100139a004Suche in Google Scholar

26. H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, J. Am. Chem. Soc. 109 (1987) 3258.10.1021/ja00245a014Suche in Google Scholar

27. M. R. Wasielewski, M. P. Niemczyk, D. G. Johnson, W. A. Svec, D. W. Minsek, Tetrahedron. 45 (1989) 4785.10.1016/S0040-4020(01)85152-8Suche in Google Scholar

28. D. Kuciauskas, P. A. Lidell, A. L. Moore, T. A. Moore, D. J. Gust, Am. Chem. Soc. 120 (1998) 10880.10.1021/ja981848eSuche in Google Scholar

29. J. W. Verhoeven, J. Photochem. Photobiol. C: Photochemical Reviews. 7 (2006) 40.10.1016/j.jphotochemrev.2006.04.001Suche in Google Scholar

30. T. Miura, M. R. Wasielewski, J. Am. Chem. Soc. 133 (2011) 2844.10.1021/ja110789qSuche in Google Scholar PubMed

31. K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Lidell, D. Gust, C. R. Timmel, P. J. Hore. Nature 453 (2008) 387.10.1038/nature06834Suche in Google Scholar PubMed

32. K. Maeda, C. J. Wedge, J. G. Storey, K. B. Henbest, P. A. Lidell, G. Kordis, D. Gust, P. J. Hore, C. R. Timmel, Chem. Commun. 47 (2011) 6563.10.1039/c1cc11625hSuche in Google Scholar

33. J. H. Klein, D. Schmidt, U. E. Steiner, C. Lambert, J. Am. Chem. Soc. 137, (2015) 11011.10.1021/jacs.5b04868Suche in Google Scholar

34. H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jap. 57 (1984) 322.10.1246/bcsj.57.322Suche in Google Scholar

35. U. E. Steiner, H. J. Wolff, In Photochemistry and Photophysics, J. J. Rabek, G. W. Scott, Eds. CRC Press: Boca Raton, 1991, Vol. IV, p. 1.Suche in Google Scholar

36. Values of 2.33 mT and 2.61 mT ares obtained using Weller’s [37] and Schulten’s [38] equations, respectively.Suche in Google Scholar

37. A. Weller, F. Nolting, H. Staerk, Chem. Phys. Lett. 96 (1983) 24.10.1016/0009-2614(83)80109-2Suche in Google Scholar

38. K. Schulten, J. Chem. Phys. 82 (1985) 1312.10.1063/1.448454Suche in Google Scholar

39. R. Haberkorn, Mol. Phys. 32 (1976) 1491.10.1080/00268977600102851Suche in Google Scholar

40. K. Maeda, P. Liddell, D. Gust, P. J. Hore, J. Chem. Phys. 139 (2013) 234309.10.1063/1.4844355Suche in Google Scholar

41. K. Tsampourakis, I. K. Kominis, Chem. Phys. Lett. 640 (2015) 40.10.1016/j.cplett.2015.10.001Suche in Google Scholar

42. K. Lüders, K. M. Salikhov, Chem. Phys. 117 (1987) 113.10.1016/0301-0104(87)80102-7Suche in Google Scholar

43. E. B. Krissinel, A. I. Burshtein, N. N. Lukzen, U. E. Steiner, Mol. Phys. 96 (1998) 1083.10.1080/00268979909483051Suche in Google Scholar

44. E. V. Gorelik, N. N. Lukzen, R. Z. Sagdeev, U. E. Steiner, Chem. Phys. 262 (2000) 303.10.1016/S0301-0104(00)00312-8Suche in Google Scholar

45. A. M. Lewis, D. E. Manolopoulos, P. J. Hore, J. Chem. Phys. 141 (2014) 044111.10.1063/1.4890659Suche in Google Scholar

46. D. R. Kattnig, J. K. Sowa, I. A. Solov’yov, P. J. Hore, New J. Phys. 18 (2016) 063007.10.1088/1367-2630/18/6/063007Suche in Google Scholar

47. C. P. Slichter, Principles of magnetic resonance, Springer Berlin: Berlin, 2010.Suche in Google Scholar

48. M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, J. Chem. Phys. 118 (2003) 192.10.1063/1.1523012Suche in Google Scholar

49. M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, Chem. Phys. Lett. 339 (2001) 395.10.1016/S0009-2614(01)00342-6Suche in Google Scholar

50. MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States, 2016.Suche in Google Scholar

51. H. J. Hogben, P. J. Hore, I. Kuprov, J. Chem. Phys. 132 (2010) 174101.10.1063/1.3398146Suche in Google Scholar PubMed

52. The value of 6.97×106 s-1 given in ref. [33] should read 6.87106 s-1.Suche in Google Scholar

53. E. V. Kalneus, A. A. Kipriyanov, P. A. Purtov, D. V. Stass, Y. N. Molin, Dokl. Phys. Chem. 415 (2007) 170.10.1134/S0012501607070020Suche in Google Scholar

54. E. V. Kalneus, A. A. Kipriyanov, A. A. Pukhov, D. V. Stass, Y. N. Molin, Appl. Magn. Reson. 30 (2006) 549.10.1007/BF03166217Suche in Google Scholar

55. A. Carrington, A. D. McLachlan, Introduction to magnetic resonance, Chapman and Hall: London, 1967.Suche in Google Scholar

Received: 2016-6-18
Accepted: 2016-8-17
Published Online: 2016-9-24
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Editorial Review
  4. From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science
  5. On Relations Between Singlet and Triplet Recombination Yields for Singlet and Triplet Precursors
  6. The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
  7. Reaction Operators for Radical Pairs. The Exactly Solvable Model
  8. Estimation of the Fraction of Spin-Correlated Radical Ion Pairs in Irradiated Alkanes using Magnetosensitive Recombination Luminescence from Exciplexes Generated upon Recombination of a Probe Pair
  9. Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences
  10. A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads
  11. Solvent Radical Anions in Irradiated Aliphatic Ketones and Esters as Observed Using Time-Resolved Magnetic Field Effects in the Recombination Fluorescence
  12. Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
  13. Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR
  14. Light-Stimulated Generation of Free Radicals by Quinones-Chelators
  15. Influence of C2-Methylation of Imidazolium Based Ionic Liquids on Photoinduced Spin Dynamics of the Dissolved ZnTPP Studied by Time-Resolved EPR
  16. ESR Study of Electron States in Ge/Si Heterostructures with Nanodisc Shaped Quantum Dots
  17. Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study
  18. Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0833/html
Button zum nach oben scrollen