The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
Abstract
In recent work from this group (J. H. Klein et al. J. Am. Chem. Soc. 2015, 137, 11011), the magnetic field dependent charge recombination kinetics in donor/Ir-complex/acceptor triads has been determined with outstanding accuracy and reproducibility. The field-dependent kinetics has been analyzed in terms of a classical reaction scheme including the field-independent rate parameters of singlet recombination (rate constant kS) and S/T0 mixing (rate constant kST0) and the field-dependent rate constant k±(B) connecting central and outer Zeeman levels. In the present work, the extraction of k± from the experimental data is more precisely defined and the appearance of a “coherent” and “incoherent” regime of spin motion in a double log plot of k± vs. B is confirmed. The experimental decay curves have been reproduced by a full quantum dynamical model based on the stochastic Liouville equation, which was solved numerically, taking into account isotropic hyperfine coupling with five nuclear spins (1 N on donor radical, 4 H on acceptor radical) and anisotropic hyperfine coupling with the nitrogen nucleus at the donor radical. The results of the quantum calculations serve as a rigorous basis of interpreting the classical parameter k±. Furthermore, it is demonstrated that the incoherent part of spin motion is essential for a full understanding of the charge recombination kinetics even in the “coherent” regime.
Dedicated to: Professor Kev Salikhov on the occasion of his 80th birthday.
Acknowledgements
We gratefully acknowledge the help of Prof. Dr. Christine Peter and Dr. Stefan Gerlach in accessing the Scientific Compute Cluster (SCC) at the University of Konstanz. N. L. thanks the Alexander-von-Humboldt Foundation for financial support allowing his visit to Konstanz. N. L. is grateful to the Russian Foundation for Basic Research (grant No. 14-03-00453 А). The work at Würzburg was supported by the DFG (GRK 2112).
References
1. G. L. Closs, J. Am. Chem. Soc. 91 (1969) 4552.10.1021/ja01044a043Suche in Google Scholar
2. R. Kaptein, J. L. Oosterhoff, Chem. Phys. Lett. 4 (1969) 195.10.1016/0009-2614(69)80098-9Suche in Google Scholar
3. F. J. Adrian, J. Chem. Phys. 53 (1970) 3374.10.1063/1.1674491Suche in Google Scholar
4. F. J. Adrian, J. Chem. Phys. 54 (1971) 3912.10.1063/1.1675446Suche in Google Scholar
5. P. W. Atkins, R. C. Gurd, K. A. McLauchlan, A. F. Simpson, Chem. Phys. Lett. 8 (1971) 55.10.1016/0009-2614(71)80574-2Suche in Google Scholar
6. J. B. Pedersen, J. H. Freed, J.Chem.Phys. 59 (1973) 2869.10.1063/1.1680418Suche in Google Scholar
7. J. B. Pedersen, J. H. Freed, J. Chem. Phys. 62 (1974) 1706.10.1063/1.430695Suche in Google Scholar
8. R. Haberkorn, Chem. Phys. 19 (1977) 165.10.1016/0301-0104(77)85129-XSuche in Google Scholar
9. R. Haberkorn, Chem. Phys. 26 (1977) 35.10.1016/0301-0104(77)87090-0Suche in Google Scholar
10. T. Haberkorn, Chem. Phys. 24 (1977) 111.10.1016/0301-0104(77)85084-2Suche in Google Scholar
11. Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 4616.10.1063/1.433719Suche in Google Scholar
12. H. J. Werner, Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 646.10.1063/1.434868Suche in Google Scholar
13. K. Schulten, P. G. Wolynes, J. Chem. Phys. 68 (1978) 3292.10.1063/1.436135Suche in Google Scholar
14. W. Knapp, K. Schulten, J. Chem. Phys. 71 (1979) 1878.10.1063/1.438541Suche in Google Scholar
15. K. M. Salikhov, Theor. Exp. Chem. (1977) 13.10.1007/BF00520804Suche in Google Scholar
16. K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, A. L. Buchachenko, Spin polarization and Magnetic Effects in Radical Reactions, Elsevier: Amsterdam, The Netherlands, 1984.Suche in Google Scholar
17. U. E. Steiner, T. Ulrich, Chem. Rev. 89 (1989) 51.10.1021/cr00091a003Suche in Google Scholar
18. J. Wang, C. J. Doubleday, N. J. Turro, J. Phys. Chem. 93 (1989) 4780.10.1021/j100349a019Suche in Google Scholar
19. Y. Tanimoto, M. Takashima, K. Hasegawa, M. Itoh, Chem. Phys. Lett. 137 (1987) 330.10.1016/0009-2614(87)80894-1Suche in Google Scholar
20. A. Weller, H. Staerk, R. Treichel, Royal Chem. Soc. Far. Discuss. 78 (1984) 271.10.1039/dc9847800271Suche in Google Scholar
21. H. Staerk, W. Kühnle, R. Treichel, A. Weller, Chem. Phys. Lett. 118 (1985) 19.10.1016/0009-2614(85)85257-XSuche in Google Scholar
22. H. Heitele, M. E. Michel-Beyerle, P. Finckh, Chem. Phys. Lett. 134 (1987) 273.10.1016/0009-2614(87)87135-XSuche in Google Scholar
23. F. J. J. de Kanter, J. A. den Hollander, A. H. Huizer., R. Kaptein, Mol. Phys. 34 (1977) 857.10.1080/00268977700102161Suche in Google Scholar
24. R. Bittl, K. Schulten, Chem. Phys. Lett. 173 (1990) 387.10.1016/0009-2614(90)85289-OSuche in Google Scholar
25. U. Werner, H. Staerk, J Phys Chem-Us 97 (1993) 9274.10.1021/j100139a004Suche in Google Scholar
26. H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, J. Am. Chem. Soc. 109 (1987) 3258.10.1021/ja00245a014Suche in Google Scholar
27. M. R. Wasielewski, M. P. Niemczyk, D. G. Johnson, W. A. Svec, D. W. Minsek, Tetrahedron. 45 (1989) 4785.10.1016/S0040-4020(01)85152-8Suche in Google Scholar
28. D. Kuciauskas, P. A. Lidell, A. L. Moore, T. A. Moore, D. J. Gust, Am. Chem. Soc. 120 (1998) 10880.10.1021/ja981848eSuche in Google Scholar
29. J. W. Verhoeven, J. Photochem. Photobiol. C: Photochemical Reviews. 7 (2006) 40.10.1016/j.jphotochemrev.2006.04.001Suche in Google Scholar
30. T. Miura, M. R. Wasielewski, J. Am. Chem. Soc. 133 (2011) 2844.10.1021/ja110789qSuche in Google Scholar PubMed
31. K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Lidell, D. Gust, C. R. Timmel, P. J. Hore. Nature 453 (2008) 387.10.1038/nature06834Suche in Google Scholar PubMed
32. K. Maeda, C. J. Wedge, J. G. Storey, K. B. Henbest, P. A. Lidell, G. Kordis, D. Gust, P. J. Hore, C. R. Timmel, Chem. Commun. 47 (2011) 6563.10.1039/c1cc11625hSuche in Google Scholar
33. J. H. Klein, D. Schmidt, U. E. Steiner, C. Lambert, J. Am. Chem. Soc. 137, (2015) 11011.10.1021/jacs.5b04868Suche in Google Scholar
34. H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jap. 57 (1984) 322.10.1246/bcsj.57.322Suche in Google Scholar
35. U. E. Steiner, H. J. Wolff, In Photochemistry and Photophysics, J. J. Rabek, G. W. Scott, Eds. CRC Press: Boca Raton, 1991, Vol. IV, p. 1.Suche in Google Scholar
36. Values of 2.33 mT and 2.61 mT ares obtained using Weller’s [37] and Schulten’s [38] equations, respectively.Suche in Google Scholar
37. A. Weller, F. Nolting, H. Staerk, Chem. Phys. Lett. 96 (1983) 24.10.1016/0009-2614(83)80109-2Suche in Google Scholar
38. K. Schulten, J. Chem. Phys. 82 (1985) 1312.10.1063/1.448454Suche in Google Scholar
39. R. Haberkorn, Mol. Phys. 32 (1976) 1491.10.1080/00268977600102851Suche in Google Scholar
40. K. Maeda, P. Liddell, D. Gust, P. J. Hore, J. Chem. Phys. 139 (2013) 234309.10.1063/1.4844355Suche in Google Scholar
41. K. Tsampourakis, I. K. Kominis, Chem. Phys. Lett. 640 (2015) 40.10.1016/j.cplett.2015.10.001Suche in Google Scholar
42. K. Lüders, K. M. Salikhov, Chem. Phys. 117 (1987) 113.10.1016/0301-0104(87)80102-7Suche in Google Scholar
43. E. B. Krissinel, A. I. Burshtein, N. N. Lukzen, U. E. Steiner, Mol. Phys. 96 (1998) 1083.10.1080/00268979909483051Suche in Google Scholar
44. E. V. Gorelik, N. N. Lukzen, R. Z. Sagdeev, U. E. Steiner, Chem. Phys. 262 (2000) 303.10.1016/S0301-0104(00)00312-8Suche in Google Scholar
45. A. M. Lewis, D. E. Manolopoulos, P. J. Hore, J. Chem. Phys. 141 (2014) 044111.10.1063/1.4890659Suche in Google Scholar
46. D. R. Kattnig, J. K. Sowa, I. A. Solov’yov, P. J. Hore, New J. Phys. 18 (2016) 063007.10.1088/1367-2630/18/6/063007Suche in Google Scholar
47. C. P. Slichter, Principles of magnetic resonance, Springer Berlin: Berlin, 2010.Suche in Google Scholar
48. M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, J. Chem. Phys. 118 (2003) 192.10.1063/1.1523012Suche in Google Scholar
49. M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, Chem. Phys. Lett. 339 (2001) 395.10.1016/S0009-2614(01)00342-6Suche in Google Scholar
50. MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States, 2016.Suche in Google Scholar
51. H. J. Hogben, P. J. Hore, I. Kuprov, J. Chem. Phys. 132 (2010) 174101.10.1063/1.3398146Suche in Google Scholar PubMed
52. The value of 6.97×106 s-1 given in ref. [33] should read 6.87106 s-1.Suche in Google Scholar
53. E. V. Kalneus, A. A. Kipriyanov, P. A. Purtov, D. V. Stass, Y. N. Molin, Dokl. Phys. Chem. 415 (2007) 170.10.1134/S0012501607070020Suche in Google Scholar
54. E. V. Kalneus, A. A. Kipriyanov, A. A. Pukhov, D. V. Stass, Y. N. Molin, Appl. Magn. Reson. 30 (2006) 549.10.1007/BF03166217Suche in Google Scholar
55. A. Carrington, A. D. McLachlan, Introduction to magnetic resonance, Chapman and Hall: London, 1967.Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial Review
- From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science
- On Relations Between Singlet and Triplet Recombination Yields for Singlet and Triplet Precursors
- The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
- Reaction Operators for Radical Pairs. The Exactly Solvable Model
- Estimation of the Fraction of Spin-Correlated Radical Ion Pairs in Irradiated Alkanes using Magnetosensitive Recombination Luminescence from Exciplexes Generated upon Recombination of a Probe Pair
- Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences
- A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads
- Solvent Radical Anions in Irradiated Aliphatic Ketones and Esters as Observed Using Time-Resolved Magnetic Field Effects in the Recombination Fluorescence
- Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
- Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR
- Light-Stimulated Generation of Free Radicals by Quinones-Chelators
- Influence of C2-Methylation of Imidazolium Based Ionic Liquids on Photoinduced Spin Dynamics of the Dissolved ZnTPP Studied by Time-Resolved EPR
- ESR Study of Electron States in Ge/Si Heterostructures with Nanodisc Shaped Quantum Dots
- Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study
- Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers
Artikel in diesem Heft
- Frontmatter
- Preface
- Editorial Review
- From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science
- On Relations Between Singlet and Triplet Recombination Yields for Singlet and Triplet Precursors
- The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
- Reaction Operators for Radical Pairs. The Exactly Solvable Model
- Estimation of the Fraction of Spin-Correlated Radical Ion Pairs in Irradiated Alkanes using Magnetosensitive Recombination Luminescence from Exciplexes Generated upon Recombination of a Probe Pair
- Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences
- A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads
- Solvent Radical Anions in Irradiated Aliphatic Ketones and Esters as Observed Using Time-Resolved Magnetic Field Effects in the Recombination Fluorescence
- Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
- Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR
- Light-Stimulated Generation of Free Radicals by Quinones-Chelators
- Influence of C2-Methylation of Imidazolium Based Ionic Liquids on Photoinduced Spin Dynamics of the Dissolved ZnTPP Studied by Time-Resolved EPR
- ESR Study of Electron States in Ge/Si Heterostructures with Nanodisc Shaped Quantum Dots
- Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study
- Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers