Startseite Reaction Operators for Radical Pairs. The Exactly Solvable Model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reaction Operators for Radical Pairs. The Exactly Solvable Model

  • Petr A. Purtov EMAIL logo
Veröffentlicht/Copyright: 18. Oktober 2016

Abstract

In the present work, the reaction operator for radical pairs of the main equation of spin chemistry has been modified on the basis of an exactly solvable model. The model contains both the reversible and irreversible transitions. For this model, expression for the reaction operator is more complex due to the expanded basis of spin states. The reaction operator of a phenomenological equation is a particular case of a more general approach and only in the limiting case of the completely irreversible recombination process, these operators coincide.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


References

1. R. Kaptein, J. L. Oosterhoff, Chem. Phys. Lett. 4 (1969) 195.10.1016/0009-2614(69)80098-9Suche in Google Scholar

2. F. J. J. De Kanter, R. Kaptein, Chem. Phys. Lett. 45 (1977) 575.10.1016/0009-2614(77)80093-6Suche in Google Scholar

3. K. M. Salikhov, Yu. N. Molin, R. Z. Sagdeev, A. L. Buchachenko, in Spin Polarization and Magnetic Effects in Radical Reactions, (Ed. Yu. N. Molin) Elsevier, Amsterdam (1984).Suche in Google Scholar

4. U. E. Steiner, T. Ulrich, Chem. Rev. 89 (1989) 51.10.1021/cr00091a003Suche in Google Scholar

5. N. E. Polyakov, P. A. Purtov, T. V. Leshina, K. M. Salikhov, R. Z. Sagdeev, Chem. Phys. Lett. 129 (1986) 357.10.1016/0009-2614(86)80358-XSuche in Google Scholar

6. A. M. Osintsev, P. A. Purtov, K. M. Salikhov, Khimicheskaya Fizika 11 (1992) 1192.Suche in Google Scholar

7. A. M. Osintsev, P. A. Purtov, K. M. Salikhov, Chem. Phys. 174 (1993) 237.10.1016/0301-0104(93)87008-BSuche in Google Scholar

8. P. A. Purtov, A. B. Doktorov, Chem. Phys. 178 (1993) 47.10.1016/0301-0104(93)85050-ISuche in Google Scholar

9. S. Nagakura, H. Hayashi, T. Azumi (Eds.), Dynamic Spin Chemistry. Magnetic Controls and Spin Dynamics of Chemical Reactions, Kodansha and Wiley, Tokyo and New York, Japan and U.S.A. (1998).Suche in Google Scholar

10. E. Bagryanskaya, H. Yashiro, M. Fedin, P. Purtov, M. D. E. Forbes, J. Phys. Chem. A, 106 (2002) 2820.10.1021/jp012271hSuche in Google Scholar

11. A. Parnachev, P. Purtov, E. Bagryanskaya, J. Chem. Phys. 107 (1997) 9942.10.1063/1.475297Suche in Google Scholar

12. E. A. Khramtsova, D. V. Sosnovsky, A. A. Ageeva, E. Nuin, M. L. Marin, P. A. Purtov, S. S. Borisevich, S. L. Khursan, H. D. Roth, M. A. Miranda, V. F. Plyusnin, T. V. Leshina, Phys. Chem. Chem. Phys. 18 (2016), 12733.10.1039/C5CP07305GSuche in Google Scholar

13. J. B. Pedersen, J. H. Freed, J. Chem. Phys. 58 (1973) 2746.10.1063/1.1679576Suche in Google Scholar

14. J. B. Pedersen, J. H. Freed, J. Chem. Phys. 59 (1973) 2869.10.1063/1.1680418Suche in Google Scholar

15. J. B. Pedersen, J. H. Freed, J. Chem. Phys. 61 (1974) 1517.10.1063/1.1682096Suche in Google Scholar

16. K. M. Salikhov, F. S. Sarvarov, R. Z. Sagdeev and Yu. N. Molin, Kinet. i Kat. 16 (1975) 279.Suche in Google Scholar

17. F. S. Sarvarov, K. M. Salikhov, React. Kinetics Catal. Lett. 4 (1976) 33.10.1007/BF02073967Suche in Google Scholar

18. G. T. Evans, P. D. Fleming, P. G. Lawler, J. Chem. Phys. 58 (1973) 2071.10.1063/1.1679472Suche in Google Scholar

19. R. Haberkorn, Mol. Phys. 32 (1976) 1491.10.1080/00268977600102851Suche in Google Scholar

20. M. Tomkievicz, A. Groen, M. J. Cocivera, Chem. Phys. 56 (1972) 5850.10.1063/1.1677127Suche in Google Scholar

21. I. V. Koptyug, N. N. Lukzen, E. G. Bagryanskaya, A. B. Doktorov, Chem. Phys. Lett. 175 (1990) 467.10.1016/0009-2614(90)85565-TSuche in Google Scholar

22. A. I. Shushin, Chem. Phys. Lett. 181 (1991) 274.10.1016/0009-2614(91)90366-HSuche in Google Scholar

23. S. I. Kubarev, S. V. Sheberstov, A. S. Shustov, Chem. Phys. Lett. 73 (1980) 370.10.1016/0009-2614(80)80391-5Suche in Google Scholar

24. S. A. Mikhailov, P. A. Purtov, A. B. Doktorov, Chem. Phys. 166 (1992) 35.10.1016/0301-0104(92)87003-RSuche in Google Scholar

25. V. L. Berdinskii, I. N. Yakunin, Dokl. Phys. Chem. 421 (2008) 163.10.1134/S0012501608070026Suche in Google Scholar

26. I. K. Kominis, Phys. Rev. E 80 (2009) 056115.10.1103/PhysRevE.80.056115Suche in Google Scholar

27. J. A. Jones, P. J. Hore, Chem. Phys. Lett. 488 (2010) 90.10.1016/j.cplett.2010.01.063Suche in Google Scholar

28. B. Misra, E. C. G. Sudarshan, J. Math. Phys. 18 (1977) 756.10.1063/1.523304Suche in Google Scholar

29. P. Facchi, S. Pascazio, Fortschr. Phys. 49 (2001) 941.10.1002/1521-3978(200110)49:10/11<941::AID-PROP941>3.0.CO;2-VSuche in Google Scholar

30. P. A. Purtov, Chem. Phys. Lett. 496 (2010) 335.10.1016/j.cplett.2010.07.006Suche in Google Scholar

31. M. Bixon, J. Jortner, J. Chem. Phys. 107 (1997) 5154.10.1063/1.474878Suche in Google Scholar

32. E. Meggers, M. E. Michel-Beyerle, B. Giese, J. Am. Chem. Soc. 120 (1998) 12950.10.1021/ja983092pSuche in Google Scholar

33. J. C. Genereux, K. E. Augustyn, M. L. Davis, F. Shao, J. K. Barton, J. Am. Chem. Soc. 130 (2008) 15150.10.1021/ja8052738Suche in Google Scholar

34. D. V. Sosnovsky, P. A. Purtov, Chem. Phys. Lett. 608 (2014) 136.10.1016/j.cplett.2014.05.068Suche in Google Scholar

35. K. L. Ivanov, M. V. Petrova, N. N. Lukzen, K. Maeda, J. Phys. Chem. A 114 (2010) 9447.10.1021/jp1048265Suche in Google Scholar

36. R. A. Harris, J. Chem. Phys. 39 (1963) 978.10.1063/1.1734401Suche in Google Scholar

37. M. Bixon, J. Jortner, J. Chem. Phys. 48 (1968) 715.10.1063/1.1668703Suche in Google Scholar

38. P. Avouris, W. M. Gelbert, M. A. El-Sayed, Chem. Rev. 77 (1977) 793.10.1021/cr60310a002Suche in Google Scholar

39. A. P. Grecos, Adv. Chem. Phys. 38 (1978) 143.10.1017/S0022050700088215Suche in Google Scholar

40. A. E. Hansen, T. D. Bouman, Adv. Chem. Phys. 44 (1980) 545.Suche in Google Scholar

41. L. Mover, Phys. Rev. 142 (1966) 799.10.1103/PhysRev.142.799Suche in Google Scholar

Received: 2016-6-20
Accepted: 2016-8-22
Published Online: 2016-10-18
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Editorial Review
  4. From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science
  5. On Relations Between Singlet and Triplet Recombination Yields for Singlet and Triplet Precursors
  6. The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination
  7. Reaction Operators for Radical Pairs. The Exactly Solvable Model
  8. Estimation of the Fraction of Spin-Correlated Radical Ion Pairs in Irradiated Alkanes using Magnetosensitive Recombination Luminescence from Exciplexes Generated upon Recombination of a Probe Pair
  9. Theoretical Description of Pulsed RYDMR: Refocusing Zero-Quantum and Single Quantum Coherences
  10. A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads
  11. Solvent Radical Anions in Irradiated Aliphatic Ketones and Esters as Observed Using Time-Resolved Magnetic Field Effects in the Recombination Fluorescence
  12. Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I
  13. Photo-CIDNP in the Reaction Center of the Diatom Cyclotella meneghiniana Observed by 13C MAS NMR
  14. Light-Stimulated Generation of Free Radicals by Quinones-Chelators
  15. Influence of C2-Methylation of Imidazolium Based Ionic Liquids on Photoinduced Spin Dynamics of the Dissolved ZnTPP Studied by Time-Resolved EPR
  16. ESR Study of Electron States in Ge/Si Heterostructures with Nanodisc Shaped Quantum Dots
  17. Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study
  18. Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0834/html?lang=de
Button zum nach oben scrollen