Abstract
An ideal drug carrier system should demonstrate optimal payload and release characteristics, thereby ensuring prolonged therapeutic index while minimizing adverse effects. The field of drug delivery has undergone significant advancements, particularly within the last two decades, owing to the revolutionary impact of biomaterials. The use of biomaterials presents significant due to their biocompatibility and biodegradability, which must be addressed in order to achieve effective drug delivery. The properties of the biomaterial and its interface are primarily influenced by their physicochemical attributes, physiological barriers, cellular trafficking, and immunomodulatory effects. By attuning these barriers, regulating the physicochemical properties, and masking the immune system’s response, the bio interface can be effectively modulated, leading to the development of innovative supramolecular structures with enhanced effectiveness. With a comprehensive understanding of these technologies, there is a growing demand for repurposing existing drugs for new therapeutic indications within this space. This review aims to provide a substantial body of evidence showcasing the productiveness of biomaterials and their interface in drug delivery, as well as methods for mitigating and modulating barriers and physicochemical properties along with an examination of future prospects in this field.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Saraswati Patel: Wrote the manuscript. Samsi D. Salaman: Data curation, Wrote the manuscript, Devesh Kapoor: Conceptualization, Wrote and Reviewed the manuscript, Richa Yadav: Made the table and diagrams, Swapnil Sharma: Conceptualization, Reviewed the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare that no potential conflicting interests exist.
-
Research funding: None declared.
-
Data availability: Not applicable.
List of abbreviations
- Ab:
-
Antibody
- AHA:
-
Alendronate-HA graft polymer
- AP-2:
-
Adapter Protein-2
- ASO:
-
Antisense oligonucleotide
- BBB:
-
Blood brain barrier
- BCECs:
-
Brain capillary endothelial cells
- BO-SLN:
-
Borneol-modified chemically solid lipid NPs
- BSA:
-
Bovine serum albumin
- CBMA:
-
Carboxybetaine methacrylate
- CCD:
-
Cyclic cyclodextrin peptide
- CHB:
-
Chronic hepatitis B
- CPLA:
-
Collagen modified polylactide
- DHA:
-
Dihydroartemisinin
- DOX:
-
Doxorubicin
- DSF:
-
Disulfiram
- EZ:
-
Ezetimibe
- FNC:
-
Flash nanocomplexation
- GSMs-TACE:
-
Gelatin sponge microparticles-transcatheter arterial chemoembolization
- HAS:
-
Human serum albumin
- HPMA:
-
Hydroxy propyl methacrylamide
- HSC:
-
Hepatic stellate cells
- ICG:
-
Indocyanine green
- LDL:
-
Low-density lipoprotein
- LRP1:
-
Lipoprotein receptor-related protein-1
- MPS:
-
Mononuclear Phagocyte System
- MTX:
-
Methotrexate
- OMV:
-
Outer membrane vesicles
- OxBCD:
-
Oxidation-responsive β-cyclodextrin material
- PCB:
-
Polycarboxybetaine
- PEG:
-
Polyethylene glycol
- PEI:
-
Polyethyleneimine
- PLGA:
-
Poly(d,l-lactide-co-glycolide)
- PLK1:
-
Polo-like kinase 1
- PMT:
-
Poly(mannitol-co-PEI) gene transporter
- PPAA:
-
Polymer poly(propylacrylic acid)
- RES:
-
Reticuloendothelial system
- RMT:
-
Receptor-mediated transcytosis
- ROS:
-
Reactive oxygen species
- RVG:
-
Rabies virus glycoprotein
- SBA -15:
-
Santa Barbara Amorphous-15
- SLN:
-
Solid lipid
- STZ:
-
Sertaconazole
- Tapt-tFNAs:
-
TNF-α-targeted aptamer (Tapt)-modified tetrahedral frame nucleic acid
- TBP:
-
Transferrin-binding peptide
- TJ:
-
Tight junctions
- TME:
-
Tumor microenvironment
- TPGS:
-
Tocopherol polyethylene glycol
- ZO:
-
Zonula occludens
References
1. Mainardes, RM, Silva, LP. Drug delivery systems: past, present, and future. Curr Drug Targets 2004;5:449–55. https://doi.org/10.2174/1389450043345407.Search in Google Scholar PubMed
2. Buckles, RG. Biomaterials for drug delivery systems. J Biomed Mater Res 1983;17:109–28. https://doi.org/10.1002/jbm.820170110.Search in Google Scholar PubMed
3. Adepu, S, Ramakrishna, S. Controlled drug delivery systems: current status and future directions. Molecules 2021;26:5905. https://doi.org/10.3390/molecules26195905.Search in Google Scholar PubMed PubMed Central
4. Peppas, NA, Langer, R. New challenges in biomaterials. Science 1994;263:1715–20. https://doi.org/10.1126/science.8134835.Search in Google Scholar PubMed
5. Sant, S, Tao, SL, Fisher, O, Xu, Q, Peppas, NA, Khademhosseini, A. Microfabrication technologies for oral drug delivery. Adv Drug Deliv Rev 2012;64:496–507. https://doi.org/10.1016/j.addr.2011.11.013.Search in Google Scholar PubMed PubMed Central
6. Yadav, S, Gangwar, S. An Overview on recent progresses and future perspective of biomaterials. IOP Conf Ser Mater Sci Eng 2018;404:012013. https://doi.org/10.1088/1757-899X/404/1/012013.Search in Google Scholar
7. Langer, R, Cima, LG, Tamada, JA, Wintermantel, E. Future directions in biomaterials. Biomaterials 1990;11:738–45. https://doi.org/10.1016/0142-9612(90)90038-R.Search in Google Scholar PubMed
8. Huebsch, N, Mooney, DJ. Inspiration and application in the evolution of biomaterials. Nature 2009;462:426–32. https://doi.org/10.1038/nature08601.Search in Google Scholar PubMed PubMed Central
9. Allen, TM, Cullis, PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818–22. https://doi.org/10.1126/science.1095833.Search in Google Scholar PubMed
10. Gref, R, Minamitake, Y, Peracchia, MT, Trubetskoy, V, Torchilin, V, Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600–3. https://doi.org/10.1126/science.8128245.Search in Google Scholar PubMed
11. Zou, Y, Huang, B, Cao, L, Deng, Y, Su, J. Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering. Adv Mater 2021;33:2005215. https://doi.org/10.1002/adma.202005215.Search in Google Scholar PubMed
12. Friess, W. Collagen–biomaterial for drug delivery. Eur J Pharm Biopharm 1998;45:113–36. https://doi.org/10.1016/s0939-6411(98)00017-4.Search in Google Scholar PubMed
13. Ahsan, SM, Thomas, M, Reddy, KK, Sooraparaju, SG, Asthana, A, Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018;110:97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140.Search in Google Scholar PubMed
14. Yucel, T, Lovett, ML, Kaplan, DL. Silk-based biomaterials for sustained drug delivery. J Contr Release 2014;190:381–97. https://doi.org/10.1016/j.jconrel.2014.05.059.Search in Google Scholar PubMed PubMed Central
15. Zhang, Z, Tan, S, Feng, S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012;33:4889–906. https://doi.org/10.1016/j.biomaterials.2012.03.046.Search in Google Scholar PubMed
16. Otero-Espinar, FJ, Torres-Labandeira, JJ, Alvarez-Lorenzo, C, Blanco-Méndez, J. Cyclodextrins in drug delivery systems. J Drug Deliv Sci Technol 2010;20:289–301. https://doi.org/10.1016/S1773-2247(10)50046-7.Search in Google Scholar
17. Hudecki, A, Kiryczyński, G, Łos, MJ. Biomaterials, definition, overview (Chapter 7). In: Łos, MJ, Hudecki, A, Wiecheć, E, editors. Stem cells and biomaterials for regenerative medicine. Irvine CA, USA: Academic Press; 2019:85–98 pp. https://doi.org/10.1016/B978-0-12-812258-7.00007-1.Search in Google Scholar
18. Williams, DF. On the nature of biomaterials. Biomaterials 2009;30:5897–909. https://doi.org/10.1016/j.biomaterials.2009.07.027.Search in Google Scholar PubMed
19. Vogler, EA. Interfacial chemistry in biomaterials. Wettability 1993;49:183.Search in Google Scholar
20. Stevens, MM, George, JH. Exploring and engineering the cell surface interface. Science 2005;310:1135–8. https://doi.org/10.1126/science.1106587.Search in Google Scholar PubMed
21. Mager, MD, LaPointe, V, Stevens, MM. Exploring and exploiting chemistry at the cell surface. Nat Chem 2011;3:582–9. https://doi.org/10.1038/nchem.1090.Search in Google Scholar PubMed
22. Zhao, Z, Ukidve, A, Krishnan, V, Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019;143:3–21. https://doi.org/10.1016/j.addr.2019.01.002.Search in Google Scholar PubMed
23. Abbina, S, Parambath, A. 14 – PEGylation and its alternatives: a summary. Engineering of biomaterials for drug delivery systems. Darya Ganj, India: Woodhead Publishing; 2018:363–76 pp. https://doi.org/10.1016/B978-0-08-101750-0.00014-3.Search in Google Scholar
24. Pandey, V, Patel, S, Danai, P, Yadav, G, Kumar, A. Phyto-constituents profiling of prosopis cineraria and in vitro assessment of antioxidant and anti-ulcerogenicity activities. Phytomedicine 2023;3:100452. https://doi.org/10.1016/j.phyplu.2023.100452.Search in Google Scholar
25. Patel, S, Jain, S, Gururani, R, Sharma, S, Dwivedi, J. Insights on synthetic strategies and structure-activity relationship of donepezil and its derivatives. Med Chem Res 2024;33:370–405. https://doi.org/10.1007/s00044-024-03186-3.Search in Google Scholar
26. Jain, S, Murmu, A, Patel, S. Elucidating the therapeutic mechanism of betanin in Alzheimer’s Disease treatment through network pharmacology and bioinformatics analysis. Metab Brain Dis 2024;39:1175–87. https://doi.org/10.1007/s11011-024-01385-w.Search in Google Scholar PubMed
27. Rahmati, M, Silva, EA, Reseland, JE, Heyward, CA, Haugen, HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020;49:5178–224. https://doi.org/10.1039/d0cs00103a.Search in Google Scholar PubMed
28. Hoffman, AS. The origins and evolution of “controlled” drug delivery systems. J Contr Release 2008;132:153–63. https://doi.org/10.1016/j.jconrel.2008.08.012.Search in Google Scholar PubMed
29. Janapareddi, K, Jasti, BR, Li, X. Evolution of controlled drug delivery systems: principles and applications. In: Drug delivery. Hoboken, New Jersey, USA: John Wiley & Sons, Ltd; 2016:336–52 pp. 10.1002/9781118833322.ch15.10.1002/9781118833322.ch15Search in Google Scholar
30. Reza Rezaie, H, Esnaashary, M, Aref arjmand, A, Öchsner, A. Classification of drug delivery systems. In: Reza Rezaie, H, Esnaashary, M, Aref arjmand, A, Öchsner, A, editors. A Review of Biomaterials and Their Applications in Drug Delivery. Singapore: Springer; 2018:9–25 pp.10.1007/978-981-10-0503-9_2Search in Google Scholar
31. Different doses of drug molecules and their comparative graphs for… | Download Scientific Diagram. n.d. https://www.researchgate.net/figure/Different-doses-of-drug-molecules-and-their-comparative-graphs-for-conventional_fig11_277709741 [Accessed 29 Feb 2024].Search in Google Scholar
32. Otto, DP, Otto, A, de Villiers, MM. Differences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery. Expet Opin Drug Deliv 2015;12:763–77. https://doi.org/10.1517/17425247.2015.988135.Search in Google Scholar PubMed
33. Yusuf, A, Almotairy, ARZ, Henidi, H, Alshehri, OY, Aldughaim, MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023;15:1596. https://doi.org/10.3390/polym15071596.Search in Google Scholar PubMed PubMed Central
34. Kinnear, C, Moore, TL, Rodriguez-Lorenzo, L, Rothen-Rutishauser, B, Petri-Fink, A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev 2017;117:11476–521. https://doi.org/10.1021/acs.chemrev.7b00194.Search in Google Scholar PubMed
35. Saikia, J, Yazdimamaghani, M, Hadipour Moghaddam, SP, Ghandehari, H. Differential protein adsorption and cellular uptake of silica nanoparticles based on size and porosity. ACS Appl Mater Interfaces 2016;8:34820–32. https://doi.org/10.1021/acsami.6b09950.Search in Google Scholar PubMed PubMed Central
36. Corbo, C, Molinaro, R, Parodi, A, Toledano Furman, NE, Salvatore, F, Tasciotti, E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 2016;11:81–100. https://doi.org/10.2217/nnm.15.188.Search in Google Scholar PubMed PubMed Central
37. Lundqvist, M, Stigler, J, Elia, G, Lynch, I, Cedervall, T, Dawson, KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008;105:14265–70. https://doi.org/10.1073/pnas.0805135105.Search in Google Scholar PubMed PubMed Central
38. Danner, A-K, Schöttler, S, Alexandrino, E, Hammer, S, Landfester, K, Mailänder, V, et al.. Phosphonylation controls the protein corona of multifunctional polyglycerol-modified nanocarriers. Macromol Biosci 2019;19:1800468. https://doi.org/10.1002/mabi.201800468.Search in Google Scholar PubMed
39. Caprifico, AE, Foot, PJ, Polycarpou, E, Calabrese, G. Overcoming the protein corona in chitosan-based nanoparticles. Drug Discov Today 2021;26:1825–40. https://doi.org/10.1016/j.drudis.2021.04.014.Search in Google Scholar PubMed
40. Hoshyar, N, Gray, S, Han, H, Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016;11:673–92. https://doi.org/10.2217/nnm.16.5.Search in Google Scholar PubMed PubMed Central
41. Sonavane, G, Tomoda, K, Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 2008;66:274–80. https://doi.org/10.1016/j.colsurfb.2008.07.004.Search in Google Scholar PubMed
42. Reuter, KG, Perry, JL, Kim, D, Luft, JC, Liu, R, DeSimone, JM. Targeted PRINT hydrogels: the role of nanoparticle size and ligand density on cell association, biodistribution, and tumor accumulation. Nano Lett 2015;15:6371–8. https://doi.org/10.1021/acs.nanolett.5b01362.Search in Google Scholar PubMed PubMed Central
43. Sugiura, S, Oda, T, Izumida, Y, Aoyagi, Y, Satake, M, Ochiai, A, et al.. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 2005;26:3327–31. https://doi.org/10.1016/j.biomaterials.2004.08.029.Search in Google Scholar PubMed
44. He, Z, Santos, JL, Tian, H, Huang, H, Hu, Y, Liu, L, et al.. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials 2017;130:28–41. https://doi.org/10.1016/j.biomaterials.2017.03.028.Search in Google Scholar PubMed
45. Jun, JY, Nguyen, HH, Paik, S-Y-R, Chun, HS, Kang, B-C, Ko, S. Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem 2011;127:1892–8. https://doi.org/10.1016/j.foodchem.2011.02.040.Search in Google Scholar
46. Chin, SF, Jimmy, FB, Pang, SC. Size controlled fabrication of cellulose nanoparticles for drug delivery applications. J Drug Deliv Sci Technol 2018;43:262–6. https://doi.org/10.1016/j.jddst.2017.10.021.Search in Google Scholar
47. Jordan, C, Shuvaev, VV, Bailey, M, Muzykantov, VR, Dziubla, TD. The role of carrier geometry in overcoming biological barriers to drug delivery. Curr Pharmaceut Des 2016;22:1259–73. https://doi.org/10.2174/1381612822666151216151856.Search in Google Scholar PubMed
48. Champion, JA, Mitragotri, S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006;103:4930–4. https://doi.org/10.1073/pnas.0600997103.Search in Google Scholar PubMed PubMed Central
49. Duan, X, Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013;9:1521–32. https://doi.org/10.1002/smll.201201390.Search in Google Scholar PubMed
50. Wang, G, Inturi, S, Serkova, NJ, Merkulov, S, McCrae, K, Russek, SE, et al.. High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano 2014;8:12437–49. https://doi.org/10.1021/nn505126b.Search in Google Scholar PubMed PubMed Central
51. Zhou, Z, Ma, X, Jin, E, Tang, J, Sui, M, Shen, Y, et al.. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials 2013;34:5722–35. https://doi.org/10.1016/j.biomaterials.2013.04.012.Search in Google Scholar PubMed
52. Jubliee, R, Komala, M, Patel, S. Therapeutic potential of resveratrol and lignans in the management of tuberculosis. Cell Biochem Biophys 2024;82:1809–23. https://doi.org/10.1007/s12013-024-01378-7.Search in Google Scholar PubMed
53. Huang, X, Li, L, Liu, T, Hao, N, Liu, H, Chen, D, et al.. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011;5:5390–9. https://doi.org/10.1021/nn200365a.Search in Google Scholar PubMed
54. Decuzzi, P, Godin, B, Tanaka, T, Lee, S-Y, Chiappini, C, Liu, X, et al.. Size and shape effects in the biodistribution of intravascularly injected particles. J Contr Release 2010;141:320–7. https://doi.org/10.1016/j.jconrel.2009.10.014.Search in Google Scholar PubMed
55. Roser, M, Fischer, D, Kissel, T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 1998;46:255–63. https://doi.org/10.1016/S0939-6411(98)00038-1.Search in Google Scholar
56. Tabata, Y, Ikada, Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 1988;9:356–62. https://doi.org/10.1016/0142-9612(88)90033-6.Search in Google Scholar PubMed
57. Sathyamoorthy, N, Dhanaraju, MD. Shielding therapeutic drug carriers from the mononuclear phagocyte system: a review. Crit Rev Ther Drug Carrier Syst 2016;33:489–567. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2016012303.Search in Google Scholar PubMed
58. Redhead, HM, Davis, SS, Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Contr Release 2001;70:353–63. https://doi.org/10.1016/S0168-3659(00)00367-9.Search in Google Scholar PubMed
59. Ahmadi, E, Dehghannejad, N, Hashemikia, S, Ghasemnejad, M, Tabebordbar, H. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv 2014;21:164–72. https://doi.org/10.3109/10717544.2013.838715.Search in Google Scholar PubMed
60. Li, X, QianYang, Ouyang, J, Yang, H, Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl Clay Sci 2016;126:306–12. https://doi.org/10.1016/j.clay.2016.03.035.Search in Google Scholar
61. Shubhra, QTH, Tóth, J, Gyenis, J, Feczkó, T. Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption. Colloids Surf B Biointerfaces 2014;122:529–36. https://doi.org/10.1016/j.colsurfb.2014.07.025.Search in Google Scholar PubMed
62. Hardiansyah, A, Huang, L-Y, Yang, M-C, Sunendar Purwasasmita, B, Liu, T-Y, Kuo, C-Y, et al.. Novel pH-sensitive drug carriers of carboxymethyl-hexanoyl chitosan (Chitosonic® Acid) modified liposomes. RSC Adv 2015;5:23134–43. https://doi.org/10.1039/C4RA14834G.Search in Google Scholar
63. Popova, MD, Szegedi, Á, Kolev, IN, Mihály, J, Tzankov, BS, Momekov, GT, et al.. Carboxylic modified spherical mesoporous silicas аs drug delivery carriers. Int J Pharm 2012;436:778–85. https://doi.org/10.1016/j.ijpharm.2012.07.061.Search in Google Scholar PubMed
64. Li, X, Liu, L, Yang, P, Li, P, Xin, J, Su, R. Synthesis of collagen-modified polylactide and its application in drug delivery. J Appl Polym Sci 2013;129:3290–6. https://doi.org/10.1002/app.39051.Search in Google Scholar
65. Wang, Y, Li, P, Kong, L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS Pharm Sci Tech 2013;14:585–92. https://doi.org/10.1208/s12249-013-9943-3.Search in Google Scholar PubMed PubMed Central
66. Coppari, S, Ramakrishna, S, Teodori, L, Albertini, MC. Cell signalling and biomaterials have a symbiotic relationship as demonstrated by a bioinformatics study: the role of surface topography. Current Opin Biomed Eng 2021;17:100246. https://doi.org/10.1016/j.cobme.2020.09.002.Search in Google Scholar
67. Finbloom, JA, Huynh, C, Huang, X, Desai, TA. Bioinspired nanotopographical design of drug delivery systems. Nat Rev Bioeng 2023;1:139–52. https://doi.org/10.1038/s44222-022-00010-8.Search in Google Scholar
68. The Bumpy Road to Stem Cell Therapies. Rational design of surface topographies to dictate stem cell mechanotransduction and fate. ACS Appl Mater Interfaces n.d.. https://pubs.acs.org/doi/abs/10.1021/acsami.1c22109 [Accessed 18 February 2024].Search in Google Scholar
69. Barik, A, Chakravorty, N. Targeted drug delivery from titanium implants: a review of challenges and approaches. In: Pokorski, M, editor. Trends in Biomedical Research. Cham: Springer International Publishing; 2019:1–17 pp.10.1007/5584_2019_447Search in Google Scholar PubMed
70. Carthew, J, Taylor, JBJ, Garcia-Cruz, MR, Kiaie, N, Voelcker, NH, Cadarso, VJ, et al.. The bumpy road to stem cell therapies: rational design of surface topographies to dictate stem cell mechanotransduction and fate. ACS Appl Mater Interfaces 2022;14:23066–101. https://doi.org/10.1021/acsami.1c22109.Search in Google Scholar PubMed
71. Wood, MA. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J R Soc Interface 2007;4:1–17. https://doi.org/10.1098/rsif.2006.0149.Search in Google Scholar PubMed PubMed Central
72. Tran, KTM, Nguyen, TD. Lithography in drug delivery. In: Lamprou, D, editor. Nano- and Microfabrication Techniques in Drug Delivery. Cham: Springer International Publishing; 2023:249–74 pp.10.1007/978-3-031-26908-0_10Search in Google Scholar
73. Glangchai, LC, Caldorera-Moore, M, Shi, L, Roy, K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Contr Release 2008;125:263–72. https://doi.org/10.1016/j.jconrel.2007.10.021.Search in Google Scholar PubMed
74. Fox, CB, Kim, J, Le, LV, Nemeth, CL, Chirra, HD, Desai, TA. Micro/nanofabricated platforms for oral drug delivery. J Contr Release 2015;219:431–44. https://doi.org/10.1016/j.jconrel.2015.07.033.Search in Google Scholar PubMed PubMed Central
75. Niu, Y, Yu, M, Meka, A, Liu, Y, Zhang, J, Yang, Y, et al.. Understanding the contribution of surface roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein delivery. J Mater Chem B 2015;4:212–19. https://doi.org/10.1039/C5TB01911G.Search in Google Scholar PubMed
76. Grundler, J, Shin, K, Suh, H-W, Zhong, M, Saltzman, WM. Surface topography of polyethylene glycol shell nanoparticles formed from bottlebrush block copolymers controls interactions with proteins and cells. ACS Nano 2021;15:16118–29. https://doi.org/10.1021/acsnano.1c04835.Search in Google Scholar PubMed PubMed Central
77. Anselmo, AC, Mitragotri, S. Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev 2017;108:51–67. https://doi.org/10.1016/j.addr.2016.01.007.Search in Google Scholar PubMed
78. Nie, D, Liu, C, Yu, M, Jiang, X, Wang, N, Gan, Y. Elasticity regulates nanomaterial transport as delivery vehicles: design, characterization, mechanisms and state of the art. Biomaterials 2022;291:121879. https://doi.org/10.1016/j.biomaterials.2022.121879.Search in Google Scholar PubMed
79. Hussain, A, Singh, S, Sharma, D, Webster, TJ, Shafaat, K, Faruk, A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomed 2017;12:5087–108. https://doi.org/10.2147/IJN.S138267.Search in Google Scholar PubMed PubMed Central
80. Müllner, M, Müller, AHE. Cylindrical polymer brushes – anisotropic building blocks, unimolecular templates and particulate nanocarriers. Polymer 2016;98:389–401. https://doi.org/10.1016/j.polymer.2016.03.076.Search in Google Scholar
81. Sun. Tunable rigidity of (polymeric core)–(lipid… – google Scholar. n.d. https://scholar.google.com/scholar_lookup?journal=Advanced+materials&title=Tunable+rigidity+of+(polymeric+core)%E2%80%93(lipid+shell)+nanoparticles+for+regulated+cellular+uptake&author=J+Sun&author=L+Zhang&author=J+Wang&author=Q+Feng&author=D+Liu&volume=27&publication_year=2015&pages=1402-1407&pmid=25529120& [Accessed 18 Feb 2024].10.1002/adma.201404788Search in Google Scholar PubMed
82. Yang, R, Wei, T, Goldberg, H, Wang, W, Cullion, K, Kohane, DS. Getting drugs across biological barriers. Adv Mater 2017;29. https://doi.org/10.1002/adma.201606596. https://doi.org/10.1002/adma.201606596.Search in Google Scholar PubMed PubMed Central
83. Blanco, E, Shen, H, Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33:941–51. https://doi.org/10.1038/nbt.3330.Search in Google Scholar PubMed PubMed Central
84. Meng, H, Leong, W, Leong, KW, Chen, C, Zhao, Y. Walking the line: the fate of nanomaterials at biological barriers. Biomaterials 2018;174:41–53. https://doi.org/10.1016/j.biomaterials.2018.04.056.Search in Google Scholar PubMed PubMed Central
85. Moros, M, Mitchell, SG, Grazu, V, Fuente, JMde l.. The fate of nanocarriers as nanomedicines in vivo: important considerations and biological barriers to overcome. Curr Med Chem 2013;20:2759–78. https://doi.org/10.2174/0929867311320220003.Search in Google Scholar PubMed
86. Rabanel, JM, Aoun, V, Elkin, I, Mokhtar, M, Hildgen, P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem 2012;19:3070–102. https://doi.org/10.2174/092986712800784702.Search in Google Scholar PubMed
87. Wu, J, Zhu, Z, Liu, W, Zhang, Y, Kang, Y, Liu, J, et al.. How nanoparticles open the paracellular route of biological barriers: mechanisms, applications, and prospects. ACS Nano 2022;16:15627–52. https://doi.org/10.1021/acsnano.2c05317.Search in Google Scholar PubMed
88. Zheng, K, Trivedi, M, Siahaan, TJ. Structure and function of the intercellular junctions: barrier of paracellular drug delivery. Curr Pharmaceut Des 2006;12:2813–24. https://doi.org/10.2174/138161206777947722.Search in Google Scholar PubMed
89. Gumbiner, BM. Breaking through the tight junction barrier. J Cell Biol 1993;123:1631–3. https://doi.org/10.1083/jcb.123.6.1631.Search in Google Scholar PubMed PubMed Central
90. Hu, Y-J, Wang, Y-D, Tan, F-Q, Yang, W-X. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 2013;40:6123–42. https://doi.org/10.1007/s11033-013-2724-y.Search in Google Scholar PubMed
91. Furuse, M. – introduction: claudins, tight junctions, and the paracellular barrier. In: Yu, ASL, editor. Current topics in membranes. Irvine, CA, USA: Academic Press; 2010:1–19 pp. https://doi.org/10.1016/S1063-5823(10)65001-6.Search in Google Scholar
92. Tamura, A, Tsukita, S. Paracellular barrier and channel functions of TJ claudins in organizing biological systems: advances in the field of barriology revealed in knockout mice. Semin Cell Dev Biol 2014;36:177–85. https://doi.org/10.1016/j.semcdb.2014.09.019.Search in Google Scholar PubMed
93. Krug, SM, Fromm, M. Special issue on “the tight junction and its proteins: more than just a barrier,”. Int J Mol Sci 2020;21:4612. https://doi.org/10.3390/ijms21134612.Search in Google Scholar PubMed PubMed Central
94. Wolburg, H, Lippoldt, A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol 2002;38:323–37. https://doi.org/10.1016/S1537-1891(02)00200-8.Search in Google Scholar PubMed
95. Buckley, A, Turner, JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harbor Perspect Biol 2018;10:a029314. https://doi.org/10.1101/cshperspect.a029314.Search in Google Scholar PubMed PubMed Central
96. Gawdi, R, Emmady, PD. Physiology, blood brain barrier. 2020. https://europepmc.org/article/nbk/nbk557721 [Accessed 20 February 2024].Search in Google Scholar
97. Bauer, H, Traweger, A. Tight junctions of the blood-brain barrier – a molecular gatekeeper. CNS Neurol Disord – Drug Targets – CNS Neurol Disord 2016;15:1016–29. https://doi.org/10.2174/1871527315666160915142244.Search in Google Scholar PubMed
98. The complex mucus matrix and the intestinal epithelium pose transport… | Download Scientific Diagram. n.d. https://www.researchgate.net/figure/The-complex-mucus-matrix-and-the-intestinal-epithelium-pose-transport-barriers-to-the_fig1_350390359 [Accessed 29 Feb 2024].Search in Google Scholar
99. Tang, W, Fan, W, Lau, J, Deng, L, Shen, Z, Chen, X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967–3014. https://doi.org/10.1039/C8CS00805A.Search in Google Scholar
100. van der Helm, MW, van der Meer, AD, Eijkel, JCT, van den Berg, A, Segerink, LI. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 2016;4:e1142493. https://doi.org/10.1080/21688370.2016.1142493.Search in Google Scholar PubMed PubMed Central
101. Tuma, PL, Hubbard, AL. Transcytosis: crossing cellular barriers. Physiol Rev 2003;83:871–932. https://doi.org/10.1152/physrev.00001.2003.Search in Google Scholar PubMed
102. Song, X, Li, R, Deng, H, Li, Y, Cui, Y, Zhang, H, et al.. Receptor mediated transcytosis in biological barrier: the influence of receptor character and their ligand density on the transmembrane pathway of active-targeting nanocarriers. Biomaterials 2018;180:78–90. https://doi.org/10.1016/j.biomaterials.2018.07.006.Search in Google Scholar PubMed
103. Predescu, SA, Predescu, DN, Malik, AB. Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2007;293:L823–42. https://doi.org/10.1152/ajplung.00436.2006.Search in Google Scholar PubMed
104. Frank, PG, Pavlides, S, Lisanti, MP. Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 2009;335:41–7. https://doi.org/10.1007/s00441-008-0659-8.Search in Google Scholar PubMed
105. Ayloo, S, Gu, C. Transcytosis at the blood–brain barrier. Curr Opin Neurobiol 2019;57:32–8. https://doi.org/10.1016/j.conb.2018.12.014.Search in Google Scholar PubMed PubMed Central
106. Preston, JE, Joan Abbott, Begley, DJ. Chapter five - transcytosis of macromolecules at the blood–brain barrier. In: Davis, TP, editor. Advances in Pharmacology. Amsterdam, The Netherlands: Academic Press; 2014:147–63 pp. https://doi.org/10.1016/bs.apha.2014.06.001.Search in Google Scholar PubMed
107. Villaseñor, R, Lampe, J, Schwaninger, M, Collin, L. Intracellular transport and regulation of transcytosis across the blood–brain barrier. Cell Mol Life Sci 2019;76:1081–92. https://doi.org/10.1007/s00018-018-2982-x.Search in Google Scholar PubMed PubMed Central
108. Brown, TD, Habibi, N, Wu, D, Lahann, J, Mitragotri, S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood–brain barrier. ACS Biomater Sci Eng 2020;6:4916–28. https://doi.org/10.1021/acsbiomaterials.0c00743.Search in Google Scholar PubMed
109. Hashimoto, Y, Campbell, M. Tight junction modulation at the blood-brain barrier: current and future perspectives. Biochim Biophys Acta Biomembr 2020;1862:183298. https://doi.org/10.1016/j.bbamem.2020.183298.Search in Google Scholar PubMed
110. Traverso, G, Schoellhammer, CM, Schroeder, A, Maa, R, Lauwers, GY, Polat, BE, et al.. Microneedles for drug delivery via the gastrointestinal tract. J Pharmaceut Sci 2015;104:362–7. https://doi.org/10.1002/jps.24182.Search in Google Scholar PubMed PubMed Central
111. Johnsen, KB, Bak, M, Melander, F, Thomsen, MS, Burkhart, A, Kempen, PJ, et al.. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Contr Release 2019;295:237–49. https://doi.org/10.1016/j.jconrel.2019.01.005.Search in Google Scholar PubMed
112. Xie, Y, Jin, Z, Ma, D, Yin, TH, Zhao, K. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral delivery of drug. Bioeng Trans Med 2023;8:e10510. https://doi.org/10.1002/btm2.10510.Search in Google Scholar PubMed PubMed Central
113. Wei, Y, Sun, Y, Wei, J, Qiu, X, Meng, F, Storm, G, et al.. Selective transferrin coating as a facile strategy to fabricate BBB-permeable and targeted vesicles for potent RNAi therapy of brain metastatic breast cancer in vivo. J Contr Release 2021;337:521–9. https://doi.org/10.1016/j.jconrel.2021.07.048.Search in Google Scholar PubMed
114. Song, H, Wei, M, Zhang, N, Li, H, Tan, X, Zhang, Y, et al.. Enhanced permeability of blood–brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle. Int J Nanomed 2018;13:1869–79. https://doi.org/10.2147/IJN.S161237.Search in Google Scholar PubMed PubMed Central
115. Madan, J, Pandey, RS, Jain, V, Katare, OP, Chandra, R, Katyal, A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomed Nanotechnol Biol Med 2013;9:492–503. https://doi.org/10.1016/j.nano.2012.10.003.Search in Google Scholar PubMed
116. Zhu, X, Wu, J, Shan, W, Zhou, Z, Liu, M, Huang, Y. Sub-50 nm nanoparticles with biomimetic surfaces to sequentially overcome the mucosal diffusion barrier and the epithelial absorption barrier. Adv Funct Mater 2016;26:2728–38. https://doi.org/10.1002/adfm.201505000.Search in Google Scholar
117. Hartl, N, Adams, F, Merkel, OM. From adsorption to covalent bonding: apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood–brain barrier. Advanced Therapeutics 2021;4:2000092. https://doi.org/10.1002/adtp.202000092.Search in Google Scholar PubMed PubMed Central
118. Verma, A, Sharma, S, Gupta, PK, Singh, A, Teja, BV, Dwivedi, P, et al.. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater 2016;31:288–300. https://doi.org/10.1016/j.actbio.2015.12.017.Search in Google Scholar PubMed
119. Park, T-E, Singh, B, Li, H, Lee, J-Y, Kang, S-K, Choi, Y-J, et al.. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials 2015;38:61–71. https://doi.org/10.1016/j.biomaterials.2014.10.068.Search in Google Scholar PubMed
120. Chang, J, Jallouli, Y, Kroubi, M, Yuan, X, Feng, W, Kang, C, et al.. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int J Pharm 2009;379:285–92. https://doi.org/10.1016/j.ijpharm.2009.04.035.Search in Google Scholar PubMed
121. Chen, H, Zhou, M, Zeng, Y, Miao, T, Luo, H, Tong, Y, et al.. Biomimetic lipopolysaccharide-free bacterial outer membrane-functionalized nanoparticles for brain-targeted drug delivery. Adv Sci 2022;9:2105854. https://doi.org/10.1002/advs.202105854.Search in Google Scholar PubMed PubMed Central
122. Zheng, Y, Xing, L, Chen, L, Zhou, R, Wu, J, Zhu, X, et al.. Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier. Biomaterials 2020;262:120323. https://doi.org/10.1016/j.biomaterials.2020.120323.Search in Google Scholar PubMed
123. Wang, G, Zabner, J, Deering, C, Launspach, J, Shao, J, Bodner, M, et al.. Increasing epithelial junction permeability enhances gene transfer to airway epithelia in vivo. Am J Respir Cell Mol Biol 2000;22:129–38. https://doi.org/10.1165/ajrcmb.22.2.3938.Search in Google Scholar PubMed
124. Lo, Y-L, Lin, H-C, Hong, S-T, Chang, C-H, Wang, C-S, Lin, AM-Y. Lipid polymeric nanoparticles modified with tight junction-modulating peptides promote afatinib delivery across a blood–brain barrier model. Cancer Nanotechnol 2021;12:13. https://doi.org/10.1186/s12645-021-00084-w.Search in Google Scholar
125. Pereira de Sousa, I, Cattoz, B, Wilcox, MD, Griffiths, PC, Dalgliesh, R, Rogers, S, et al.. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. Eur J Pharm Biopharm 2015;97:257–64. https://doi.org/10.1016/j.ejpb.2015.01.008.Search in Google Scholar PubMed
126. Gao, C, Gong, W, Yang, M, Chu, X, Wang, Y, Li, Z, et al.. T807-modified human serum albumin biomimetic nanoparticles for targeted drug delivery across the blood–brain barrier. J Drug Target 2020;28:1085–95. https://doi.org/10.1080/1061186X.2020.1777420.Search in Google Scholar PubMed
127. Sridharan, R, Cameron, AR, Kelly, DJ, Kearney, CJ, O’Brien, FJ. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today 2015;18:313–25. https://doi.org/10.1016/j.mattod.2015.01.019.Search in Google Scholar
128. Allen, TM. Toxicity of drug carriers to the mononuclear phagocyte system. Adv Drug Deliv Rev 1988;2:55–67. https://doi.org/10.1016/0169-409X(88)90005-1.Search in Google Scholar
129. Gustafson, HH, Holt-Casper, D, Grainger, DW, Ghandehari, H. Nanoparticle uptake: the phagocyte problem. Nano Today 2015;10:487–510. https://doi.org/10.1016/j.nantod.2015.06.006.Search in Google Scholar PubMed PubMed Central
130. Becker, S. Functions of the human mononuclear phagocyte system (a condensed review). Adv Drug Deliv Rev 1988;2:1–29. https://doi.org/10.1016/0169-409X(88)90003-8.Search in Google Scholar
131. Chou, W-C, Lin, Z. Impact of protein coronas on nanoparticle interactions with tissues and targeted delivery. Curr Opin Biotechnol 2024;85:103046. https://doi.org/10.1016/j.copbio.2023.103046.Search in Google Scholar PubMed PubMed Central
132. Owens, DE, Peppas, NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.Search in Google Scholar PubMed
133. Corbo, C, Molinaro, R, Tabatabaei, M, Farokhzad, OC, Mahmoudi, M. Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 2017;5:378–87. https://doi.org/10.1039/C6BM00921B.Search in Google Scholar
134. Hui, Y, Yi, X, Wibowo, D, Yang, G, Middelberg, APJ, Gao, H, et al.. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci Adv 2020;6:eaaz4316. https://doi.org/10.1126/sciadv.aaz4316.Search in Google Scholar PubMed PubMed Central
135. Dobrovolskaia, MA, McNeil, SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007;2:469–78. https://doi.org/10.1038/nnano.2007.223.Search in Google Scholar PubMed
136. Muhammad, Q, Jang, Y, Kang, SH, Moon, J, Kim, WJ, Park, H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci 2020;8:1490–501. https://doi.org/10.1039/C9BM01643K.Search in Google Scholar PubMed
137. Jokerst, JV, Lobovkina, T, Zare, RN, Gambhir, SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011;6:715–28. https://doi.org/10.2217/nnm.11.19.Search in Google Scholar PubMed PubMed Central
138. Cho, YW, Park, JH, Park, JS, Park, K, Gad, SC. PEGylation: camouflage of proteins, cells, and nanoparticles against recognition by the body’s defense mechanism. In: . Handbook of Pharmaceutical Biotechnology. New Jersey: Wiley; 2007:443–61 pp.10.1002/9780470117118.ch4eSearch in Google Scholar
139. Tang, Y, Wang, X, Li, J, Nie, Y, Liao, G, Yu, Y, et al.. Overcoming the reticuloendothelial system barrier to drug delivery with a “don’t-eat-us” strategy. ACS Nano 2019;13:13015–26. https://doi.org/10.1021/acsnano.9b05679.Search in Google Scholar PubMed
140. Fang, RH, Hu, C-MJ, Zhang, L. Nanoparticles disguised as red blood cells to evade the immune system. Expet Opin Biol Ther 2012;12:385–9. https://doi.org/10.1517/14712598.2012.661710.Search in Google Scholar PubMed
141. Gheibi Hayat, SM, Jaafari, MR, Hatamipour, M, Jamialahmadi, T, Sahebkar, A. Harnessing CD47 mimicry to inhibit phagocytic clearance and enhance anti-tumor efficacy of nanoliposomal doxorubicin. Expet Opin Drug Deliv 2020;17:1049–58. https://doi.org/10.1080/17425247.2020.1772749.Search in Google Scholar PubMed
142. Kim, Y-H, Min, KH, Wang, Z, Kim, J, Jacobson, O, Huang, P, et al.. Development of sialic acid-coated nanoparticles for targeting cancer and efficient evasion of the immune system. Theranostics 2017;7:962–73. https://doi.org/10.7150/thno.19061.Search in Google Scholar PubMed PubMed Central
143. Zhang, Z, Wang, C, Zha, Y, Hu, W, Gao, Z, Zang, Y, et al.. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. ACS Nano 2015;9:2405–19. https://doi.org/10.1021/nn505166x.Search in Google Scholar PubMed
144. Sahay, G, Alakhova, DY, Kabanov, AV. Endocytosis of nanomedicines. J Contr Release 2010;145:182–95. https://doi.org/10.1016/j.jconrel.2010.01.036.Search in Google Scholar PubMed PubMed Central
145. Watson, P, Jones, AT, Stephens, DJ. Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev 2005;57:43–61. https://doi.org/10.1016/j.addr.2004.05.003.Search in Google Scholar PubMed
146. Patel, S, Sathyanathan, V, Salaman, SD. Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: a comprehensive review. Tissue Cell 2024;88:102377. https://doi.org/10.1016/j.tice.2024.102377.Search in Google Scholar PubMed
147. Kumar, D, Patel, S. Machine learning-driven insights into ctDNA for oral cancer: applications, models, and future prospects. Oral oncology Reports 2024;11:100629. https://doi.org/10.1016/j.oor.2024.100629.Search in Google Scholar
148. The fluid mosaic model of the structure of cell membranes | Science. n.d. https://www.science.org/doi/abs/10.1126/science.175.4023.720 [Accessed 21 Feb 2024].Search in Google Scholar
149. Mitragotri, S, Lahann, J. Physical approaches to biomaterial design. Nat Mater 2009;8:15–23. https://doi.org/10.1038/nmat2344.Search in Google Scholar PubMed PubMed Central
150. Harush-Frenkel, O, Debotton, N, Benita, S, Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 2007;353:26–32. https://doi.org/10.1016/j.bbrc.2006.11.135.Search in Google Scholar PubMed
151. Kim, S, Choi, I-H. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med J 2012;53:654–7. https://doi.org/10.3349/ymj.2012.53.3.654.Search in Google Scholar PubMed PubMed Central
152. Means, N, Elechalawar, CK, Chen, WR, Bhattacharya, R, Mukherjee, P. Revealing macropinocytosis using nanoparticles. Mol Aspect Med 2022;83:100993. https://doi.org/10.1016/j.mam.2021.100993.Search in Google Scholar PubMed PubMed Central
153. Ho, YT, Kamm, RD, Kah, JCY. Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis. Nanoscale 2018;10:12386–97. https://doi.org/10.1039/c8nr02393j.Search in Google Scholar PubMed
154. Foroozandeh, P, Aziz, AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 2018;13:339. https://doi.org/10.1186/s11671-018-2728-6.Search in Google Scholar PubMed PubMed Central
155. Wang, Z, Tiruppathi, C, Cho, J, Minshall, RD, Malik, AB. Delivery of nanoparticle-complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life 2011;63:659–67. https://doi.org/10.1002/iub.485.Search in Google Scholar PubMed PubMed Central
156. Pelkmans, L, Helenius, A. Endocytosis via caveolae. Traffic 2002;3:311–20. https://doi.org/10.1034/j.1600-0854.2002.30501.x.Search in Google Scholar PubMed
157. McMahon, HT, Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011;12:517–33. https://doi.org/10.1038/nrm3151.Search in Google Scholar PubMed
158. Yoshida, S, Pacitto, R, Inoki, K, Swanson, J. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol Life Sci 2018;75:1227–39. https://doi.org/10.1007/s00018-017-2710-y.Search in Google Scholar PubMed PubMed Central
159. Li, Y-X, Pang, H-B. Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles. J Contr Release 2021;329:1222–30. https://doi.org/10.1016/j.jconrel.2020.10.049.Search in Google Scholar PubMed PubMed Central
160. Tokarev, AA, Alfonso, A, Segev, N. Overview of intracellular compartments and trafficking pathways. In: Madame Curie Bioscience Database. Landes Bioscience; 2013. [Internet] https://www.ncbi.nlm.nih.gov/books/NBK7286/ [Accessed 19 Feb 2024].Search in Google Scholar
161. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials – zhao – 2011 – small – wiley online library. n.d. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201100001 [Accessed 19 Feb 2024].Search in Google Scholar
162. Grant, BD, Sato, M. Intracellular trafficking. Worm 2006:1. https://doi.org/10.1895/wormbook.1.77.1.Search in Google Scholar PubMed PubMed Central
163. Frontiers | membrane trafficking and subcellular drug targeting pathways. n.d. https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.00629/full [Accessed 29 Feb 2024].Search in Google Scholar
164. Sato, K, Norris, A, Sato, M, Grant, BD. Figure 1, Membrane trafficking pathways in the endomembrane system; 2018. https://www.ncbi.nlm.nih.gov/books/NBK19650/figure/membranetraffic_figure1/ [Accessed 29 Feb 2024].Search in Google Scholar
165. Donahue, ND, Acar, H, Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019;143:68–96. https://doi.org/10.1016/j.addr.2019.04.008.Search in Google Scholar PubMed
166. Cleal, K, He, L, Watson, PD, Jones, AT. Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Curr Pharmaceut Des 2013;19:2878–94. https://doi.org/10.2174/13816128113199990297.Search in Google Scholar PubMed
167. Fröhlich, E. Cellular elimination of nanoparticles. Environ Toxicol Pharmacol 2016;46:90–4. https://doi.org/10.1016/j.etap.2016.07.003.Search in Google Scholar PubMed
168. Florczak, A, Mackiewicz, A, Dams-Kozlowska, H. Cellular uptake, intracellular distribution and degradation of Her2-targeting silk nanospheres. IJN 2019;14:6855–65. https://doi.org/10.2147/IJN.S217854.Search in Google Scholar PubMed PubMed Central
169. Ahmad, A, Khan, JM, Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019;160:61–75. https://doi.org/10.1016/j.biochi.2019.02.012.Search in Google Scholar PubMed
170. Pei, D, Buyanova, M. Overcoming endosomal entrapment in drug delivery. Bioconjugate Chem 2019;30:273–83. https://doi.org/10.1021/acs.bioconjchem.8b00778.Search in Google Scholar PubMed PubMed Central
171. Pittella, F, Zhang, M, Lee, Y, Kim, HJ, Tockary, T, Osada, K, et al.. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials 2011;32:3106–14. https://doi.org/10.1016/j.biomaterials.2010.12.057.Search in Google Scholar PubMed
172. Chan, C-L, Majzoub, RN, Shirazi, RS, Ewert, KK, Chen, Y-J, Liang, KS, et al.. Endosomal escape and transfection efficiency of PEGylated cationic liposome–DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials 2012;33:4928–35. https://doi.org/10.1016/j.biomaterials.2012.03.038.Search in Google Scholar PubMed PubMed Central
173. Evans, BC, Fletcher, RB, Kilchrist, KV, Dailing, EA, Mukalel, AJ, Colazo, JM, et al.. An anionic, endosome-escaping polymer to potentiate intracellular delivery of cationic peptides, biomacromolecules, and nanoparticles. Nat Commun 2019;10:5012. https://doi.org/10.1038/s41467-019-12906-y.Search in Google Scholar PubMed PubMed Central
174. Zheng, L, Bandara, SR, Tan, Z, Leal, C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proc Natl Acad Sci USA 2023;120. https://doi.org/10.1073/pnas.2301067120.Search in Google Scholar PubMed PubMed Central
175. Qiu, C, Wei, W, Sun, J, Zhang, H-T, Ding, J-S, Wang, J-C, et al.. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. Nanoscale 2016;8:13033–44. https://doi.org/10.1039/C6NR04034A.Search in Google Scholar
176. Gujrati, M, Malamas, A, Shin, T, Jin, E, Sun, Y, Lu, Z-R. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 2014;11:2734–44. https://doi.org/10.1021/mp400787s.Search in Google Scholar PubMed PubMed Central
177. Sakurai, Y, Hatakeyama, H, Sato, Y, Akita, H, Takayama, K, Kobayashi, S, et al.. Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials 2011;32:5733–42. https://doi.org/10.1016/j.biomaterials.2011.04.047.Search in Google Scholar PubMed
178. Santiwarangkool, S, Akita, H, Nakatani, T, Kusumoto, K, Kimura, H, Suzuki, M, et al.. PEGylation of the GALA peptide enhances the lung-targeting activity of nanocarriers that contain encapsulated siRNA. J Pharmaceut Sci 2017;106:2420–7. https://doi.org/10.1016/j.xphs.2017.04.075.Search in Google Scholar PubMed
179. Li, Y, Cheng, Q, Jiang, Q, Huang, Y, Liu, H, Zhao, Y, et al.. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. J Contr Release 2014;176:104–14. https://doi.org/10.1016/j.jconrel.2013.12.007.Search in Google Scholar PubMed
180. Wang, M, Li, X, Ma, Y, Gu, H. Endosomal escape kinetics of mesoporous silica-based system for efficient siRNA delivery. Int J Pharm 2013;448:51–7. https://doi.org/10.1016/j.ijpharm.2013.03.022.Search in Google Scholar PubMed
181. Arneth, B. Tumor microenvironment. Medicina 2020;56:15. https://doi.org/10.3390/medicina56010015.Search in Google Scholar PubMed PubMed Central
182. Weber, CE, Kuo, PC. The tumor microenvironment. Surgical Oncology 2012;21:172–7. https://doi.org/10.1016/j.suronc.2011.09.001.Search in Google Scholar PubMed
183. Wang, M, Zhao, J, Zhang, L, Wei, F, Lian, Y, Wu, Y, et al.. Role of tumor microenvironment in tumorigenesis. J Cancer 2017;8:761–73. https://doi.org/10.7150/jca.17648.Search in Google Scholar PubMed PubMed Central
184. Whiteside, TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008;27:5904. https://doi.org/10.1038/onc.2008.271.Search in Google Scholar PubMed PubMed Central
185. Dvorak, HF, Weaver, VM, Tlsty, TD, Bergers, G. Tumor microenvironment and progression. J Surg Oncol 2011;103:468–74. https://doi.org/10.1002/jso.21709.Search in Google Scholar PubMed PubMed Central
186. Mbeunkui, F, Johann, DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009;63:571–82. https://doi.org/10.1007/s00280-008-0881-9.Search in Google Scholar PubMed PubMed Central
187. Du, J, Lane, LA, Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Contr Release 2015;219:205–14. https://doi.org/10.1016/j.jconrel.2015.08.050.Search in Google Scholar PubMed PubMed Central
188. Danhier, F, Feron, O, Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Contr Release 2010;148:135–46. https://doi.org/10.1016/j.jconrel.2010.08.027.Search in Google Scholar PubMed
189. He, Q, Chen, J, Yan, J, Cai, S, Xiong, H, Liu, Y, et al.. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020;15:416–48. https://doi.org/10.1016/j.ajps.2019.08.003.Search in Google Scholar PubMed PubMed Central
190. Chen, Q, Liu, G, Liu, S, Su, H, Wang, Y, Li, J, et al.. Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends Pharmacol Sci 2018;39:59–74. https://doi.org/10.1016/j.tips.2017.10.009.Search in Google Scholar PubMed
191. Han, S, Huang, K, Gu, Z, Wu, J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. Nanoscale 2020;12:413–36. https://doi.org/10.1039/C9NR08086D.Search in Google Scholar
192. Niu, Y, Zhu, J, Li, Y, Shi, H, Gong, Y, Li, R, et al.. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. J Contr Release 2018;277:35–47. https://doi.org/10.1016/j.jconrel.2018.03.012.Search in Google Scholar PubMed
193. Roma-Rodrigues, C, Pombo, I, Raposo, L, Pedrosa, P, Fernandes, AR, Baptista, PV. Nanotheranostics targeting the tumor microenvironment. Front Bioeng Biotechnol 2019;7. https://doi.org/10.3389/fbioe.2019.00197. https://www.frontiersin.org/articles/10.3389/fbioe.2019.00197 [Accessed 23 Feb 2024].Search in Google Scholar PubMed PubMed Central
194. Zhou, Z, Li, L, Yang, Y, Xu, X, Huang, Y. Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials 2014;35:6622–35. https://doi.org/10.1016/j.biomaterials.2014.04.059.Search in Google Scholar PubMed
195. Wongpinyochit, T, Uhlmann, P, Urquhart, AJ, Seib, FP. PEGylated silk nanoparticles for anticancer drug delivery. Biomacromolecules 2015;16:3712–22. https://doi.org/10.1021/acs.biomac.5b01003.Search in Google Scholar PubMed
196. Ruan, S, He, Q, Gao, H. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale 2015;7:9487–96. https://doi.org/10.1039/C5NR01408E.Search in Google Scholar PubMed
197. Ye, Y, Wang, J, Hu, Q, Hochu, GM, Xin, H, Wang, C, et al.. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016;10:8956–63. https://doi.org/10.1021/acsnano.6b04989.Search in Google Scholar PubMed
198. Cooper, GS, Stroehla, BC. The epidemiology of autoimmune diseases. Autoimmun Rev 2003;2:119–25. https://doi.org/10.1016/S1568-9972(03)00006-5.Search in Google Scholar PubMed
199. Ma, W-T, Chang, C, Gershwin, ME, Lian, Z-X. Development of autoantibodies precedes clinical manifestations of autoimmune diseases: a comprehensive review. J Autoimmun 2017;83:95–112. https://doi.org/10.1016/j.jaut.2017.07.003.Search in Google Scholar PubMed
200. Yuan, F, Thiele, GM, Wang, D. Nanomedicine development for autoimmune diseases. Drug Dev Res 2011;72:703–16. https://doi.org/10.1002/ddr.20479.Search in Google Scholar
201. Prosperi, D, Colombo, M, Zanoni, I, Granucci, F. Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Semin Immunol 2017;34:61–7. https://doi.org/10.1016/j.smim.2017.08.010.Search in Google Scholar PubMed PubMed Central
202. Silva, AL, Peres, C, Conniot, J, Matos, AI, Moura, L, Carreira, B, et al.. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 2017;34:3–24. https://doi.org/10.1016/j.smim.2017.09.003.Search in Google Scholar PubMed
203. Liu, Y, Hardie, J, Zhang, X, Rotello, VM. Effects of engineered nanoparticles on the innate immune system. Semin Immunol 2017;34:25–32. https://doi.org/10.1016/j.smim.2017.09.011.Search in Google Scholar PubMed PubMed Central
204. Zhang, Q, Tao, H, Lin, Y, Hu, Y, An, H, Zhang, D, et al.. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials 2016;105:206–21. https://doi.org/10.1016/j.biomaterials.2016.08.010.Search in Google Scholar PubMed
205. Reddy, ST, Rehor, A, Schmoekel, HG, Hubbell, JA, Swartz, MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Contr Release 2006;112:26–34. https://doi.org/10.1016/j.jconrel.2006.01.006.Search in Google Scholar PubMed
206. Zhang, M, Wen, Y, Huang, Z, Qin, X, Zhou, M, Xiao, D, et al.. Targeted therapy for autoimmune diseases based on multifunctional frame nucleic acid system: blocking TNF-α-NF-κB signaling and mediating macrophage polarization. Chem Eng J 2023;454:140399. https://doi.org/10.1016/j.cej.2022.140399.Search in Google Scholar
207. Czech, T, Lalani, R, Oyewumi, MO. Delivery systems as vital Tools in drug repurposing. AAPS PharmSciTech 2019;20:116. https://doi.org/10.1208/s12249-019-1333-z.Search in Google Scholar PubMed
208. Andreana, I, Repellin, M, Carton, F, Kryza, D, Briançon, S, Chazaud, B, et al.. Nanomedicine for gene delivery and drug repurposing in the treatment of muscular dystrophies. Pharmaceutics 2021;13:278. https://doi.org/10.3390/pharmaceutics13020278.Search in Google Scholar PubMed PubMed Central
209. Parvathaneni, V, Kulkarni, NS, Muth, A, Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 2019;24:2076–85. https://doi.org/10.1016/j.drudis.2019.06.014.Search in Google Scholar PubMed PubMed Central
210. Liang, J, Li, L, Tian, H, Wang, Z, Liu, G, Duan, X, et al.. Drug repurposing-based brain-targeting self-assembly nanoplatform using enhanced ferroptosis against glioblastoma. Small 2023;19:2303073. https://doi.org/10.1002/smll.202303073.Search in Google Scholar PubMed
211. Liu, R, Li, Q, Qin, S, Qiao, L, Yang, M, Liu, S, et al.. Sertaconazole-repurposed nanoplatform enhances lung cancer therapy via CD44-targeted drug delivery. J Exp Clin Cancer Res 2023;42:188. https://doi.org/10.1186/s13046-023-02766-2.Search in Google Scholar PubMed PubMed Central
212. Chitosan coated lipid carriers as nanoplatform for repurposed anti-breast cancer activity of niclosamide – ScienceDirect. n.d. https://www.sciencedirect.com/science/article/abs/pii/S1773224724000820 [Accessed 24 Feb 2024].Search in Google Scholar
213. Su, M, Tian, H, Zhou, L, Li, Q, Wang, S, Haung, C, et al.. Brigatinib-repurposed chemo-photodynamic therapy nanoplatform via effective apoptosis against colorectal cancer. Mater Des 2023;226:111613. https://doi.org/10.1016/j.matdes.2023.111613.Search in Google Scholar
214. Gao, Z, Li, Y, Zhang, Y, An, P, Chen, F, Chen, J, et al.. A CD44-targeted Cu(II) delivery 2D nanoplatform for sensitized disulfiram chemotherapy to triple-negative breast cancer. Nanoscale 2020;12:8139–46. https://doi.org/10.1039/D0NR00434K.Search in Google Scholar
215. Kammoun, AK, Hegazy, MA, Khedr, A, Awan, ZA, Khayat, MT, Al-Sawahli, MM. Etodolac fortified sodium deoxycholate stabilized zein nanoplatforms for augmented repositioning profile in human hepatocellular carcinoma: assessment of bioaccessibility, anti-proliferation, pro-apoptosis and oxidant potentials in HepG2 cells. Pharmaceuticals 2022;15:916. https://doi.org/10.3390/ph15080916.Search in Google Scholar PubMed PubMed Central
216. Wen, H, Fei, Y, Cai, R, Yao, X, Li, Y, Wang, X, et al.. Tumor-activatable biomineralized nanotherapeutics for integrative glucose starvation and sensitized metformin therapy. Biomaterials 2021;278:121165. https://doi.org/10.1016/j.biomaterials.2021.121165.Search in Google Scholar PubMed
217. El Menshawe, SF, Shalaby, K, Elkomy, MH, Aboud, HM, Ahmed, YM, Abdelmeged, AA, et al.. Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis. Int J Pharm 2024;X 7:100225. https://doi.org/10.1016/j.ijpx.2023.100225.Search in Google Scholar PubMed PubMed Central
218. Yousefnezhad, M, Davaran, S, Babazadeh, M, Akbarzadeh, A, Pazoki-Toroudi, H. PCL-based nanoparticles for doxorubicin-ezetimibe co-delivery: a combination therapy for prostate cancer using a drug repurposing strategy. Bioimpacts 2023;13:241–53. https://doi.org/10.34172/bi.2023.24252.Search in Google Scholar PubMed PubMed Central
219. Liu, S, Tian, H, Ming, H, Zhang, T, Gao, Y, Liu, R, et al.. Mitochondrial-targeted CS@KET/P780 nanoplatform for site-specific delivery and high-efficiency cancer immunotherapy in hepatocellular carcinoma. Adv Sci n/a n.d.:2308027. https://doi.org/10.1002/advs.202308027.Search in Google Scholar PubMed PubMed Central
220. Kopeček, J. Biomaterials and drug delivery: past, present, and future. Mol Pharm 2010;7:922–5. https://doi.org/10.1021/mp1001813.Search in Google Scholar PubMed PubMed Central
221. Fenton, OS, Olafson, KN, Pillai, PS, Mitchell, MJ, Langer, R. Advances in biomaterials for drug delivery. Adv Mater 2018:e1705328. https://doi.org/10.1002/adma.201705328.Search in Google Scholar PubMed PubMed Central
222. Sadtler, K, Singh, A, Wolf, MT, Wang, X, Pardoll, DM, Elisseeff, JH. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat Rev Mater 2016;1:1–17. https://doi.org/10.1038/natrevmats.2016.40.Search in Google Scholar
223. Shi, J, Xiao, Z, Kamaly, N, Farokhzad, OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 2011;44:1123–34. https://doi.org/10.1021/ar200054n.Search in Google Scholar PubMed
224. Ryan, SM, Brayden, DJ. Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr Opin Pharmacol 2014;18:120–8. https://doi.org/10.1016/j.coph.2014.09.019.Search in Google Scholar PubMed
225. Wei, L, Zhao, T, Zhang, J, Mao, Q, Gong, G, Sun, Y, et al.. Efficacy and safety of a nanoparticle therapeutic vaccine in patients with chronic hepatitis B: a randomized clinical trial. Hepatology 2022;75:182–95. https://doi.org/10.1002/hep.32109.Search in Google Scholar PubMed
226. Kremsner, PG, Mann, P, Kroidl, A, Leroux-Roels, I, Schindler, C, Gabor, JJ, et al.. Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2. Wien Klin Wochenschr 2021;133:931–41. https://doi.org/10.1007/s00508-021-01922-y.Search in Google Scholar PubMed PubMed Central
227. Merle, P, Blanc, JF, Phelip, JM, Pelletier, G, Bronowicki, JP, Touchefeu, Y, et al.. Doxorubicin-loaded nanoparticles for patients with advanced hepatocellular carcinoma after sorafenib treatment failure (RELIVE): a phase 3 randomised controlled trial. The Lancet Gastroenterol Hepatol 2019;4:454–65. https://doi.org/10.1016/s2468-1253(19)30040-8.Search in Google Scholar
228. Zhou, Q, Sun, X, Zeng, L, Liu, J, Zhang, Z. A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomed Nanotechnol Biol Med 2009;5:419–23. https://doi.org/10.1016/j.nano.2009.01.009.Search in Google Scholar PubMed
229. Garbuio, DC, Ribeiro, Vdos S, Hamamura, AC, Faustino, A, de Freitas, LAP, Viani, G, et al.. A chitosan-coated chamomile microparticles formulation to prevent radiodermatitis in breast: a double-blinded, controlled, randomized, phase II clinical trial. Am J Clin Oncol 2022;45:183. https://doi.org/10.1097/COC.0000000000000905.Search in Google Scholar PubMed
230. Zhao, GS, Liu, S, Liu, Y, Li, C, Wang, RY, Bian, J, et al.. Clinical application of gelatin sponge microparticles-transcatheter arterial chemoembolization combined with synchronous antigen-presenting dendritic cell sequential reinfusion for treatment of advanced large liver cancer. Medicine 2022;101:e28803. https://doi.org/10.1097/MD.0000000000028803.Search in Google Scholar PubMed PubMed Central
231. Alexandrov, AV, Mikulik, R, Ribo, M, Sharma, VK, Lao, AY, Tsivgoulis, G, et al.. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke 2008;39:1464–9. https://doi.org/10.1161/STROKEAHA.107.505727.Search in Google Scholar PubMed PubMed Central
232. Golestannejad, Z, Khozeimeh, F, Mehrasa, M, Mirzaeei, S, Sarfaraz, D. A novel drug delivery system using acyclovir nanofiber patch for topical treatment of recurrent herpes labialis: a randomized clinical trial. Clin Exp Dental Res 2022;8:184–90. https://doi.org/10.1002/cre2.512.Search in Google Scholar PubMed PubMed Central
233. Okubo, K, Uchida, E, Terahara, T, Akiyama, K, Kobayashi, S, Tanaka, Y. Efficacy and safety of the emedastine patch, a novel transdermal drug delivery system for allergic rhinitis: phase III, multicenter, randomized, double-blinded, placebo-controlled, parallel-group comparative study in patients with seasonal allergic rhinitis. Allergol Int 2018;67:371–9. https://doi.org/10.1016/j.alit.2017.12.005.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review
- Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook
- Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment
- Pharmacological and toxicological profile of the Stachys lavandulifolia Vahl: a comprehensive review
- Research Articles
- Essential oil composition, in vitro antidiabetic, cytotoxicity, antimicrobial, antioxidant activity, and in silico molecular modeling analysis of secondary metabolites from Justicia schimperiana
- French marigold (Tagetes patula) flavonoid extract-based priming ameliorates initial drought stress on Oryza sativa var indica, cultivar Satabdi (IET4786): a sustainable approach to avoid initial drought stress
- Assessing the molecular interaction between a COVID-19 drug, nirmatrelvir, and human serum albumin: calorimetric, spectroscopic, and microscopic investigations
- Insight into in vitro thymidine phosphorylase and in silico molecular docking studies: identification of hybrid thiazole bearing Schiff base derivatives
- In vivo evaluation of the antinociceptive effects of novel methylsulfonyl group-containing compounds
Articles in the same Issue
- Frontmatter
- Review Articles
- Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review
- Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook
- Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment
- Pharmacological and toxicological profile of the Stachys lavandulifolia Vahl: a comprehensive review
- Research Articles
- Essential oil composition, in vitro antidiabetic, cytotoxicity, antimicrobial, antioxidant activity, and in silico molecular modeling analysis of secondary metabolites from Justicia schimperiana
- French marigold (Tagetes patula) flavonoid extract-based priming ameliorates initial drought stress on Oryza sativa var indica, cultivar Satabdi (IET4786): a sustainable approach to avoid initial drought stress
- Assessing the molecular interaction between a COVID-19 drug, nirmatrelvir, and human serum albumin: calorimetric, spectroscopic, and microscopic investigations
- Insight into in vitro thymidine phosphorylase and in silico molecular docking studies: identification of hybrid thiazole bearing Schiff base derivatives
- In vivo evaluation of the antinociceptive effects of novel methylsulfonyl group-containing compounds