Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment
-
Yenework Nigussie Ashagrie
, Kundan Kumar Chaubey
, Mesfin Getachew Tadesse , Deen Dayal , Rakesh Kumar Bachheti, Nishant Rai
, Atreyi Pramanik , Sorabh Lakhanpal , Anuj Kandwal and Archana Bachheti
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance. By 2045, it is projected that India and China will have approximately 134.3 and 110.8 million diabetic individuals, respectively. Although synthetic drugs are effective in managing DM, they often come with side effects. Consequently, plant-based phytochemicals with antidiabetic properties are gaining attention. Research indicates that around 115 medicinal plants (MPs) have antidiabetic effects, particularly those from the Fabaceae, Liliaceae, and Lamiaceae families. Bioactive compounds like alkaloids, triterpenoids, flavonoids, and phenolics are known to combat DM. Traditional medicinal systems, particularly in developing countries, offer effective DM management. This review highlights the importance of MPs and their bioactive compounds in treating diabetes and underscores the need for further research to commercialize plant-based antidiabetic drugs.
Acknowledgment
The authors acknowledge Universities for providing the necessities to write the review article.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state that they have no conflicts of interest
-
Research funding: None declared
-
Data availability: Not applicable.
References
1. Rath, P, Ranjan, A, Chauhan, A, Verma, NK, Bhargava, A, Prasad, R, et al.. A critical review on the role of available synthetic drugs and phytochemicals in IR treatment by targeting PTP1B. Appl Biochem Biotechnol 2022;194:4683–701. https://doi.org/10.1007/s12010-022-04028-x.Search in Google Scholar PubMed
2. Usai, R, Majoni, S, Rwere, F. Natural products for the treatment and management of DM in Zimbabwe-a review. Front Pharmacol 2022;13:980819. https://doi.org/10.3389/fphar.2022.980819.Search in Google Scholar PubMed PubMed Central
3. Sun, H, Saeedi, P, Karuranga, S, Pinkepank, M, Ogurtsova, K, Duncan, BB, et al.. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.Search in Google Scholar PubMed PubMed Central
4. Ansari, P, Akther, S, Hannan, JMA, Seidel, V, Nujat, NJ, Abdel-Wahab, YHA. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of DM. Molecules 2022;27:4278. https://doi.org/10.3390/molecules27134278.Search in Google Scholar PubMed PubMed Central
5. Alam, S, Sarker, MMR, Sultana, TN, Chowdhury, MNR, Rashid, MA, Chaity, NI, et al.. Antidiabetic phytochemicals from MPs: prospective candidates for new drug discovery and development. Front Endocrinol 2022;13. https://doi.org/10.3389/fendo.2022.800714.Search in Google Scholar PubMed PubMed Central
6. Bisht, SS, Jaiswal, N, Sharma, A, Fatima, S, Sharma, R, Rahuja, N, et al.. A convenient synthesis of novel pyranosyl homo-C-nucleosides and their antidiabetic activities. Carbohydr Res 2011;346:1191–201. https://doi.org/10.1016/j.carres.2011.03.006.Search in Google Scholar PubMed
7. Bisht, SS, Fatima, S, Tamrakar, AK, Rahuja, N, Jaiswal, N, Srivastava, AK, et al.. Synthetic studies in butenonyl C-glycosides: preparation of polyfunctional alkanonyl glycosides and their enzyme inhibitory activity. Bioorg Med Chem Lett 2009;19:2699–703. https://doi.org/10.1016/j.bmcl.2009.03.136.Search in Google Scholar PubMed
8. Kambale, EK, Quetin-Leclercq, J, Memvanga, PB, Beloqui, A. An Overview of herbal-based antidiabetic drug delivery systems: focus on lipid- and inorganic-based nanoformulations. Pharmaceutics 2022;14:2135. https://doi.org/10.3390/pharmaceutics14102135.Search in Google Scholar PubMed PubMed Central
9. Bahmani, M, Golshahi, H, Saki, K, Rafieian-Kopaei, M, Delfan, B, Mohammadi, T. MPs and secondary metabolites for DM control. Asian Pac J Trop Dis 2014;4:S687-92. https://www.sciencedirect.com/science/article/pii/S2222180814607088.10.1016/S2222-1808(14)60708-8Search in Google Scholar
10. Du, L, Li, Q, Yi, H, Kuang, T, Tang, Y, Fan, G. Gut microbiota-derived metabolites as key actors in type 2 DM development: a review. Biomed Pharmacother 2021;140:112839. 111762. https://www.sciencedirect.com/science/article/pii/S075333222200227X.10.1016/j.biopha.2022.112839Search in Google Scholar PubMed
11. Pradeepa, R, Mohan, V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol 2021;69:2932–8. https://doi.org/10.4103/ijo.IJO_1627_21.Search in Google Scholar PubMed PubMed Central
12. Khan, MAB, Hashim, MJ, King, JK, Govender, RD, Mustafa, H, Al Kaabi, J. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health 2020;10:107–11. https://doi.org/10.2991/jegh.k.191028.001.Search in Google Scholar PubMed PubMed Central
13. Kyrou, I, Tsigos, C, Mavrogianni, C, Cardon, G, Van Stappen, V, Latomme, J, et al.. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: a narrative review with emphasis on data from Europe. BMC Endocr Disord 2020;20:134. https://doi.org/10.1186/s12902-019-0463-3.Search in Google Scholar PubMed PubMed Central
14. Galicia-garcia, U. Pathophysiology of Type 2 DM; 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503727/?report=reader [Accessed 1 Mar 2023].Search in Google Scholar
15. Di, Renzo L, Gualtieri, P, Pivari, F, Soldati, L, Attinà, A, Cinelli, G, et al.. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med 2020. https://doi.org/10.1186/s12967-020-02399-5.Search in Google Scholar PubMed PubMed Central
16. Sweeting, A, Wong, J, Murphy, HR, Ross, GP. A clinical update on gestational DM. Endocr Rev 2022;43:763–93. https://doi.org/10.1210/endrev/bnac003.Search in Google Scholar PubMed PubMed Central
17. Alfonso-Muñoz, EA, Burggraaf-Sánchez de Las Matas, R, Mataix, BJ, Molina Martín, JC, Desco, C. Role of oral antioxidant supplementation in the current management of diabetic retinopathy. Int J Mol Sci 2021;22:4020. https://doi.org/10.3390/ijms22084020.Search in Google Scholar PubMed PubMed Central
18. Daruich, A, Matet, A, Moulin, A, Kowalczuk, L, Nicolas, M, Sellam, A, et al.. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 2018;63:20–68. https://doi.org/10.1016/j.preteyeres.2017.10.006.Search in Google Scholar PubMed
19. Padma, KR, Don, KR, Josthna, P Herbal plant Uvaria species and its therapeutic potentiality; 2020.Search in Google Scholar
20. Przeor, M. Some common MPs with antidiabetic activity, known and available in Europe (a mini-review). Pharmaceuticals 2022;15:65. https://doi.org/10.3390/ph15010065.Search in Google Scholar PubMed PubMed Central
21. Takahashi, T, Miyazawa, M. Potent α‐glucosidase inhibitors from safflower (Carthamus tinctorius L.) seed. Phytother Res 2012;26:722–6. https://doi.org/10.1002/ptr.3622.Search in Google Scholar PubMed
22. Yoshikawa, M, Matsuda, H, Harada, E, Murakami, T, Wariishi, N, Yamahara, J, et al.. Elatoside E, a new hypoglycemic principle from the root cortex of Aralia elata Seem.: structure-related hypoglycemic activity of oleanolic acid glycosides. Chem Pharm Bull 1994;42:1354–6. https://doi.org/10.1248/cpb.42.1354.Search in Google Scholar PubMed
23. Raoof, GA, Mohamed, KY. Natural products for the management of diabetes. Stud Nat Prod Chem 2018;59:323–74. https://doi.org/10.1016/b978-0-444-64179-3.00010-4.Search in Google Scholar
24. Islam, MS, Choi, H. Kostrød chili (Capsicum frutescens L.) er insulinotropisk snarere end hypoglykæmisk i type 2-diabetesmodel af rotter. Phytother Res 2008;22:1025–9. https://doi.org/10.1002/ptr.2417.Search in Google Scholar PubMed
25. Gram, DX, Ahrén, B, Nagy, I, Olsen, UB, Brand, CL, Sundler, F, et al.. Capsaicin‐sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 2007;25:213–23. https://doi.org/10.1111/j.1460-9568.2006.05261.x.Search in Google Scholar PubMed
26. Singab, AB, El-Beshbishy, HA, Yonekawa, M, Nomura, T, Fukai, T. Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J Ethnopharmacol 2005;100:333–8. https://doi.org/10.1016/j.jep.2005.03.013.Search in Google Scholar PubMed
27. Akar, F, Pektas, MB, Tufan, C, Soylemez, S, Sepici, A, Ulus, AT, et al.. Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits. Cardiovasc Drugs Ther 2011;25:119–31. https://doi.org/10.1007/s10557-010-6255-7.Search in Google Scholar PubMed
28. Fuentes, O, Arancibia-Avila, P, Alarcón, J. Hypoglycemic activity of Bauhinia candicans in diabetic induced rabbits. Fitoterapia 2004;75:527–32. https://doi.org/10.1016/j.fitote.2004.03.013.Search in Google Scholar PubMed
29. Goel, R, Bhatia, D, Gilani, SJ, Katiyar, D. MPs as antidiabetics: a review. Int Bull Drug Res 2012;1:100–7.Search in Google Scholar
30. Kim, S, Jwa, H, Yanagawa, Y, Park, T. Extract from Dioscorea batatas ameliorates IR in mice fed a high-fat diet. J Med Food 2012;15:527–34. https://doi.org/10.1089/jmf.2011.2008.Search in Google Scholar PubMed
31. Shen, Y, Fukushima, M, Ito, Y, Muraki, E, Hosono, T, Seki, T, et al.. Verification of the antidiabetic effects of cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes. Biosci Biotechnol Biochem 2010;74:2418–25. https://doi.org/10.1271/bbb.100453.Search in Google Scholar PubMed
32. Grover, JK, Yadav, S, Vats, V. MPs of India with anti-diabetic potential. J Ethnopharmacol 2002;81:81–100. https://doi.org/10.1016/s0378-8741(02)00059-4.Search in Google Scholar PubMed
33. Sokeng, SD, Lontsi, D, Moundipa, PF, Jatsa, HB, Watcho, P, Kamtchouing, P. Hypoglycemic effect of Anacardium occidentale L. methanol extract and fractions on streptozotocin-induced diabetic rats. GJPP; 2007, 1:01–5 pp.Search in Google Scholar
34. Subash-Babu, P, Ignacimuthu, S, Agastian, P, Varghese, B. Partial regeneration of β-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorg Med Chem 2009;17:2864–70. https://doi.org/10.1016/j.bmc.2009.02.021.Search in Google Scholar PubMed
35. Abrar, A, Yousuf, S, Dasan, MK. Formulation and evaluation of microsphere of antiulcer drug using Acacia nilotica gum. Int J Health Sci 2020;14:10–17.Search in Google Scholar
36. Khatteli, A, Ali Benabderrahim, M, Triki, T, Guasmi, F. Aroma volatiles, phenolic profile and hypoglycaemic activity of Ajuga iva L. Food Biosci 2020;36:100578. https://doi.org/10.1016/j.fbio.2020.100578.Search in Google Scholar
37. Galavi, A, Hosseinzadeh, H, Razavi, BM. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: a review. Iran J Basic Med Sci 2021;24:3–16. https://doi.org/10.22038/ijbms.2020.46956.10843.Search in Google Scholar PubMed PubMed Central
38. Muñiz-Ramirez, A, Perez, RM, Garcia, E, Garcia, FE. Antidiabetic activity of Aloe vera leaves. Evid base Compl Alternative Med 2020;2020:e6371201. https://doi.org/10.1155/2020/6371201.Search in Google Scholar PubMed PubMed Central
39. Kaur, G, Sankrityayan, H, Dixit, D, Jadhav, P. Cocos nucifera and metformin combination for modulation of diabetic symptoms in streptozotocin-induced diabetic rats. J Ayurveda Integr Med 2020;11:3–9. https://doi.org/10.1016/j.jaim.2017.02.006.Search in Google Scholar PubMed PubMed Central
40. Zamany, S, Mahdavi, AM, Pirouzpanah, S, Barzegar, A. The effects of coriander seed supplementation on serum glycemic indices, lipid profile and parameters of oxidative stress in patients with type 2 DM: a randomized double-blind placebo-controlled clinical trial. Review; 2022.10.21203/rs.3.rs-262149/v2Search in Google Scholar
41. Tanzidi-Roodi, O, Jafari, F, AkbariRad, M, Asili, J, Elyasi, S. Evaluation of a new herbal formulation (Viabet®) efficacy in patients with type 2 diabetes as an adjuvant to metformin: a randomized, triple-blind, placebo-controlled clinical trial. J Herb Med 2023;37:100617. 100617. https://doi.org/10.1016/j.hermed.2022.100617.Search in Google Scholar
42. Mohammadhosseini, M. Hydrodistilled volatile oil from stems of Eryngium creticum Lam. in the marginal brackish regions of Semnan Province by using gas chromatography combined with mass spectrometry. Asian J Chem 2013;25. https://doi.org/10.14233/ajchem.2013.13112.Search in Google Scholar
43. Alkofahi, AS, Abdul-Razzak, KK, Alzoubi, KH, Khabour, OF. Report – screening of the anti-hyperglycemic activity of some MPs of Jordan. Pak J Pharm Sci 2017;30:907–12.Search in Google Scholar
44. Sher, H, Alyemeni, MN. Evaluation of anti-diabetic activity and toxic potential of Lycium shawii in animal models. J MPs Res 2011;5:3387–95.Search in Google Scholar
45. Boas, GRV, Lemos, JMR, Oliveira, MWde, dos Santos, RC, Stefanello da Silveira, AP, Barbieri Bacha, F, et al.. Aqueous extract from Mangifera indica Linn. (Anacardiaceae) leaves exerts long-term hypoglycemic effect, increases insulin sensitivity and plasma insulin levels on diabetic Wistar rats. PLoS One 2020;15:e0227105. https://doi.org/10.1371/journal.pone.0227105.Search in Google Scholar PubMed PubMed Central
46. Mollataghi, K, Asgari, M, Salamati, M, Mollataghi, A. Alfalfa leaves replace insulin as a hypoglycemic, antidiabetic and insulinotropic. FMCR 2022;03. https://doi.org/10.47746/FMCR.2022.3205.Search in Google Scholar
47. Kifle, ZD, Abdelwuhab, M, Melak, AD, Genet, G, Meseret, T, Adugna, M. Pharmacological evaluation of MPs with antidiabetic activities in Ethiopia: a review. Metabolism Open 2022;13:100174. https://doi.org/10.1016/j.metop.2022.100174.Search in Google Scholar PubMed PubMed Central
48. Ayoubi, S, Raafat, K, El-Lakany, A, Aboul-Ela, M. Phytochemical investigation of Psoralea bituminosa L. and its anti-diabetic potentials. Phcog J 2018;10:73–85. https://doi.org/10.5530/pj.2017.3.14.Search in Google Scholar
49. Ghorbani, A, Amiri, MS, Hosseini, A. Pharmacological properties of Rheum turkestanicum Janisch. Heliyon 2019;5:e01986. https://doi.org/10.1016/j.heliyon.2019.e01986.Search in Google Scholar PubMed PubMed Central
50. Hadjzadeh, M-A-R, Rajaei, Z, Khodaei, E, Malek, M, Ghanbari, H. Rheum turkestanicum rhizomes possess anti-hypertriglyceridemic, but not hypoglycemic or hepatoprotective effect in experimental diabetes. Avicenna J Phytomed 2017;7:1–9.Search in Google Scholar
51. Visuvanathan, T, Than, LTL, Stanslas, J, Chew, SY, Vellasamy, S. Revisiting Trigonella foenum-graecum L.: Pharmacology and Therapeutic Potentialities. Plants 2022;11:1450. https://doi.org/10.3390/plants11111450.Search in Google Scholar PubMed PubMed Central
52. Attama, SC, Aba, PE, Asuzu, CU, Asuzu, IU. Comparative studies on the hypoglycemic and antioxidant activities of Vernonia amygdalina delile and Baccharoides tenoreana olive in alloxan-induced hyperglycemic rats. Clin Phytosci 2021;7:91. https://doi.org/10.1186/s40816-021-00330-z.Search in Google Scholar
53. Srinivasan, K. Plant foods in the management of DM: spices as beneficial antidiabetic food adjuncts. Int J Food Sci Nutr 2005;56:399–414. https://doi.org/10.1080/09637480500512872.Search in Google Scholar PubMed
54. Akhani, SP, Vishwakarma, SL, Goyal, RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 2004;56:101–5. https://doi.org/10.1211/0022357022403.Search in Google Scholar PubMed
55. Kajszczak, D, Zakłos-Szyda, M, Podsędek, A. Viburnum opulus L. – a review of phytochemistry and biological effects. Nutrients 2020;12:3398. https://doi.org/10.3390/nu12113398.Search in Google Scholar PubMed PubMed Central
56. Zakłos-Szyda, M, Kowalska-Baron, A, Pietrzyk, N, Drzazga, A, Podsędek, A. Evaluation of Viburnum opulus L. fruit phenolics cytoprotective potential on insulinoma MIN6 cells relevant for DM and obesity. Antioxidants 2020;9:433. https://doi.org/10.3390/antiox9050433.Search in Google Scholar PubMed PubMed Central
57. Woldekidan, S, Mulu, A, Ergetie, W, Teka, F, Meressa, A, Tadele, A, et al.. Evaluation of antihyperglycemic effect of extract of Moringa stenopetala (Baker f.) aqueous leaves on alloxan-induced diabetic rats. Diabetes Metab Syndr Obes 2021;14:185–92. https://doi.org/10.2147/DMSO.S266794.Search in Google Scholar PubMed PubMed Central
58. Chan, SW, Tomlinson, B, Chan, P, Lam, CWK. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk. Pharmaceut Biol 2021;59:1159–69. https://doi.org/10.1080/13880209.2021.1969413.Search in Google Scholar PubMed PubMed Central
59. Ma, H-T, Hsieh, J-F, Chen, S-T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry 2015;114:109–13. https://doi.org/10.1016/j.phytochem.2015.02.017.Search in Google Scholar PubMed
60. Asgary, S, RafieianKopaei, M, Sahebkar, A, Shamsi, F, Goli‐malekabadi, N. Anti-hyperglycemic and anti-hyperlipidemic effects of Vaccinium myrtillus fruit in experimentally induced diabetes (antidiabetic effect of Vaccinium myrtillus fruit). J Sci Food Agric 2016;96:764–8. https://doi.org/10.1002/jsfa.7144.Search in Google Scholar PubMed
61. Chu, W, Cheung, SCM, Lau, RAW, Benzie, IFF. Bilberry (Vaccinium myrtillus L.). In: Benzie, IFF, Wachtel-Galor, S, editors. Herbal medicine: biomolecular and clinical aspects, 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2011.10.1201/b10787-5Search in Google Scholar
62. Das Gupta, P, De, A. DM and its herbal treatment. Int J Res Pharmaceut Biomed Sci 2012;3:706–21.Search in Google Scholar
63. Choi, C, Han, J, Son, Y, Joo, S, Kwon, S, Lee, YH. Green tea extract exhibits antidiabetic effects partly through regulating dipeptidyl peptidase-4 expression in adipose tissue. J Nutr Biochem 2023;111:109173. https://doi.org/10.1016/j.jnutbio.2022.109173.Search in Google Scholar PubMed
64. Wan, C, Ouyang, J, Li, M, Rengasamy, KR, Liu, Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on DM and diabetic complications: recent advances. Crit Rev Food Sci Nutr 2022;1–29. https://doi.org/10.1080/10408398.2022.2157372.Search in Google Scholar PubMed
65. Hsu, Y-J, Lee, T-H, Chang, CL-T, Huang, YT, Yang, WC. Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J Ethnopharmacol 2009;122:379–83. https://doi.org/10.1016/j.jep.2008.12.027.Search in Google Scholar PubMed
66. Kuo, T-F, Yang, G, Chen, T-Y, Wu, Y, Tran Nguyen Minh, H, Chen, L, et al.. Bidens pilosa: nutritional value and benefits for metabolic syndrome. Food Front 2021;2:32–45. https://doi.org/10.1002/fft2.63.Search in Google Scholar
67. Agada, R, Usman, WA, Shehu, S, Thagariki, D. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon 2020;6:e03618. https://doi.org/10.1016/j.heliyon.2020.e03618.Search in Google Scholar PubMed PubMed Central
68. Sachdewa, A, Khemani, LD. Effect of Hibiscus rosasinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J Ethnopharmacol 2003;89:61–6. https://doi.org/10.1016/s0378-8741(03)00230-7.Search in Google Scholar PubMed
69. Venkatesh, S, Thilagavathi, J, Shyam sundar, D. Anti-diabetic activity of flowers of Hibiscus rosasinensis. Fitoterapia 2008;79:79–81. https://doi.org/10.1016/j.fitote.2007.06.015.Search in Google Scholar PubMed
70. Liu, X, Wei, J, Tan, F, Zhou, S, Würthwein, G, Rohdewald, P. Antidiabetic effect of Pycnogenol French maritime pine bark extract in patients with diabetes type II. Life Sci 2004;75:2505–13. https://doi.org/10.1016/j.lfs.2003.10.043.Search in Google Scholar PubMed
71. Mohammed, M, Fouad, M. Chemical and biological review on various classes of secondary metabolites and biological activities of Arecaceae (2021–2006). J Adv Biomed Pharmaceut Sci 2022;5:113–50. https://doi.org/10.21608/jabps.2022.126338.1149.Search in Google Scholar
72. Daswad, AK, Wadher, DSJ. Anti-diabetic traditional MPs: a comprehensive review. World J Pharmaceut Res 2022;11:110–19. https://doi.org/10.20959/wjpr202210-24508.Search in Google Scholar
73. Vyas, N, Mehra, R, Makhija, R. Salacia – the new multi-targeted approach in diabetics. Ayu 2016;37:92–7. https://doi.org/10.4103/ayu.AYU_134_13.Search in Google Scholar PubMed PubMed Central
74. Bouhrim, M, Ouassou, H, Boutahiri, S, Daoudi, NE, Mechchate, H, Gressier, B, et al.. Opuntia dillenii (Ker Gawl.) Haw., seeds oil antidiabetic potential using in vivo, in vitro, in Situ, and ex vivo approaches to reveal its underlying mechanism of action. Molecules 2021;26:1677. https://doi.org/10.3390/molecules26061677.Search in Google Scholar PubMed PubMed Central
75. Loukili, EH, Bouchal, B, Bouhrim, M, Abrigach, F, Genva, M, Zidi, K, et al.. Chemical composition, antibacterial, antifungal and antidiabetic activities of ethanolic extracts of Opuntia dillenii fruits collected from Morocco. J Food Qual 2022;2022:1–15. https://doi.org/10.1155/2022/9471239.Search in Google Scholar
76. Cura, JK, Basilio, A, Llagas, MCDL. Antidiabetic, anti-inflammatory and cytotoxic potential of Theobroma cacao Linn. husk aqueous extracts. Clin Phytosci 2021;7:94. https://doi.org/10.1186/s40816-021-00320-1.Search in Google Scholar
77. Kababie-Ameo, R, Rabadán-Chávez, GM, Vázquez-Manjarrez, N, Gutiérrez-Salmeán, G. Potential applications of cocoa (Theobroma cacao) on diabetic neuropathy: mini-review. Front Biosci (Landmark Ed) 2022;27:57. https://doi.org/10.31083/j.fbl2702057.Search in Google Scholar PubMed
78. Attele, AS, Zhou, Y-P, Xie, J-T, Wu, JA, Zhang, L, Dey, L, et al.. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51:1851–8. https://doi.org/10.2337/diabetes.51.6.1851.Search in Google Scholar PubMed
79. Orhan, DD, Aslan, M, Sendogdu, N, Ergun, F, Yesilada, E. Evaluation of the hypoglycemic effect and antioxidant activity of three Viscum album subspecies (European mistletoe) in streptozotocin-diabetic rats. J Ethnopharmacol 2005;98:95–102. https://doi.org/10.1016/j.jep.2004.12.033.Search in Google Scholar PubMed
80. Szurpnicka, A, Kowalczuk, A, Szterk, A. Biological activity of mistletoe: in vitro and in vivo studies and mechanisms of action. Arch Pharm Res (Seoul) 2020;43:593–629. https://doi.org/10.1007/s12272-020-01247-w.Search in Google Scholar PubMed PubMed Central
81. Paul, S, Chakraborty, S, Anand, U, Dey, S, Nandy, S, Ghorai, M, et al.. Withania somnifera (L.) Dunal (Ashwagandha): a comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021;143:112175. https://doi.org/10.1016/j.biopha.2021.112175.Search in Google Scholar PubMed
82. Udayakumar, R, Kasthurirengan, S, Mariashibu, TS, Rajesh, M, Anbazhagan, VR, Kim, SC, et al.. Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 2009;10:2367–82. https://doi.org/10.3390/ijms10052367.Search in Google Scholar PubMed PubMed Central
83. Rahman, S, Jan, G, Jan, FG, Rahim, HU. Phytochemical screening and antidiabetic, antihyperlipidemic, and antioxidant effects of Leptopus Cordifolius Decne. In diabetic mice. Front Pharmacol 2021;12:643242. https://doi.org/10.3389/fphar.2021.643242.Search in Google Scholar PubMed PubMed Central
84. Gurudeeban, S, Satyavani, K, Ramanathan, T, Balasubramanian, T. Antidiabetic effect of a black mangrove species Aegiceras corniculatum in alloxan-induced diabetic rats. J Adv Pharm Technol Res 2012;3:52–6. https://doi.org/10.4103/2231-4040.93560.Search in Google Scholar PubMed PubMed Central
85. Ansari, A, Mahmood, T, Bagga, P, Ahsan, F, Shamim, A, Ahmad, S, et al.. Areca catechu: a phytopharmacological legwork. Food Front 2021;2:163–83. https://doi.org/10.1002/fft2.70.Search in Google Scholar
86. Gaamoussi, F, Israili, ZH, Lyoussi, B. Hypoglycemic and hypolipidemic effects of an aqueous extract of Chamaerops humilis leaves in obese, hyperglycemic and hyperlipidemic Meriones shawi rats. Pak J Pharm Sci 2010;23:212–19.Search in Google Scholar
87. Ga, G, P, K, D, A, Chakraborty, E, Ahmed, IA, Mahalingam, G. Vitexin isolated from Acanthus ilicifolius L. leaf enhances GLUT-4 translocation in experimental diabetic rats. Review 2023. https://doi.org/10.1007/s10499-023-01235-z.Search in Google Scholar
88. Masaenah, E, Elya, B, Setiawan, H, Fadhilah, Z, Wediasari, F, Nugroho, GA, et al.. Antidiabetic activity and acute toxicity of combined extract of Andrographis paniculata, Syzygium cumini, and Caesalpinia sappan. Heliyon 2021;7:e08561. https://doi.org/10.1016/j.heliyon.2021.e08561.Search in Google Scholar PubMed PubMed Central
89. In vitro and in vivo antidiabetic effect of Andrographis lineata Wall. Ex.Nees and Andrographis serphyllifolia Wt.Ic leaf extracts Semantic Scholar. https://www.semanticscholar.org/paper/In-vitro-and-in-vivo-antidiabetic-effect-of-lineata-Deepa-Rajaram/36233735f035514cc8c0cb6597dca0b0bec99014 [Accessed 21 Jan 2023].Search in Google Scholar
90. Reddy, N, Anarthe, S, Raghavendra, NM. In vitro antioxidant and antidiabetic activity of Asystasia gangetica (Chinese Violet) Linn. (Acanthaceae). Int J Res Pharm Biomed Sci 2010;1:72–5.Search in Google Scholar
91. Venkataiah, G, Ahmed, M, Reddy, DS, Rejeena, M. Anti-diabetic activity of Acanthus ilicifolius root extract in alloxan-induced diabetic rats. Indo-Am J Pharmaceut Res 2013;3:9007–12.Search in Google Scholar
92. Shyam, T, Ganapaty, S. Evaluation of antidiabetic activity of methanolic extracts from the aerial parts of Barleria montana in streptozotocin-induced diabetic rats. J Pharmacogn Phytochem 2013;2:187–92.Search in Google Scholar
93. Wati, A, Ningsih, R, Masawoy, D. Activity of ethanol extract of purple leaves (Graptophyllum pictum (Linn.) Griff.) on alloxan-induced diabetes mice. Int J PharmTech Res 2015;7:497–501.Search in Google Scholar
94. Kaleem, M, Asif, M, Ahmed, QU, Bano, B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singap Med J 2006;47:670–5.Search in Google Scholar
95. Shirwaikar, A, Kuppusamy, R, Kumar Chellappan, D. Oral antidiabetic activity of Annona squamosa leaf alcohol extract in NIDDM rats. Pharmaceut Biol Pharm Biol 2004;42:30–5. https://doi.org/10.1080/13880200490505438.Search in Google Scholar
96. Lakshmi, A, Rao, YM, Bhargavi, C, Seelam, U. Antidiabetic and wound healing activity of various bark extracts of Polyalthia longifolia. Asian J Pharmaceut Clin Res 2011;4:109–13.Search in Google Scholar
97. Chatterjee, T. In vitro and in vivo antidiabetic activity of Polyalthia longifolia (Sonner.) Thw. leaves; 2013. https://link.springer.com/article/10.1007/s13596-013-0118-2 [Accessed 28 Feb 2023].Search in Google Scholar
98. Hasani-Ranjbar, S, Larijani, B, Abdollahi, M. A systematic review of Iranian MPs used in DM. Arch Med Sci 2008;4:285–92.Search in Google Scholar
99. Ammar, NM, Okbi, SYA, Badawy, IH. The hypoglycemic effect of different extracts of Ambrosia maritima, L. compositae; 1993.Search in Google Scholar
100. Rajeswari, J, Kesavan, K, Jayakar, B. Antidiabetic activity and chemical characterization of aqueous/ethanol prop root extracts of Pandanus fascicularis Lam in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 2012;2:S170–4. https://doi.org/10.1016/S2221-1691(12)60152-X.Search in Google Scholar
101. Peungvicha, P, Temsiririrkkul, R, Prasain, JK, Tezuka, Y, Kadota, S, Thirawarapan, SS, et al.. 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root. J Ethnopharmacol 1998;62:79–84. https://doi.org/10.1016/s0378-8741(98)00061-0.Search in Google Scholar PubMed
102. Rubio, OC, Cuellar Cuellar, A, Rojas, N, Castro, HV, Rastrelli, L, Aquino, R. A polyisoprenylated benzophenone from Cuban propolis. J Nat Prod 1999;62:1013–15. https://doi.org/10.1021/np980339n.Search in Google Scholar PubMed
103. Guasch, L, Ojeda, MJ, Gonzalez-Abuin, N, Sala, E, Cereto-Massague, A, Mulero, M, et al.. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): virtual screening and activity assays. PLoS One 2012;7:e44971. https://doi.org/10.1371/journal.pone.0044971.Search in Google Scholar PubMed PubMed Central
104. Seino, Y, Fukushima, M, Yabe, D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig 2010;1:8–23. https://doi.org/10.1111/j.2040-1124.2010.00022.x.Search in Google Scholar PubMed PubMed Central
105. Kim, W, Egan, JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470–512. https://doi.org/10.1124/pr.108.000604.Search in Google Scholar PubMed PubMed Central
106. Shehadeh, MB, Suaifan, GARY, Abu-Odeh, AM. Plants secondary metabolites as blood glucose-lowering molecules. Molecules 2021;26:4333. https://doi.org/10.3390/molecules26144333.Search in Google Scholar PubMed PubMed Central
107. Kapoor, R, Kakkar, P. Protective role of morin, a flavonoid, against high glucose-induced oxidative stress-mediated apoptosis in primary rat hepatocytes. PLoS One 2012;7:e41663. https://doi.org/10.1371/journal.pone.0041663.Search in Google Scholar PubMed PubMed Central
108. Zaharudin, N, Staerk, D, Dragsted, LO. Inhibition of α-glucosidase activity by selected edible seaweeds and fucoxanthin. Food Chem 2019;270:481–6. https://doi.org/10.1016/j.foodchem.2018.07.142.Search in Google Scholar PubMed
109. Tran, N, Pham, B, Le, L. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology 2020;9:252. https://doi.org/10.3390/biology9090252.Search in Google Scholar PubMed PubMed Central
110. Adhikari, B. Roles of alkaloids from medicinal plants in the management of diabetes mellitus. J Chem 2021. https://doi.org/10.1155/2021/2691525.Search in Google Scholar
111. Oates, PJ. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 2008;9:14–36. https://doi.org/10.2174/138945008783431781.Search in Google Scholar PubMed
112. Tiong, SH, Looi, CY, Hazni, H, Arya, A, Paydar, M, Wong, WF, et al.. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013;18:9770–84. https://doi.org/10.3390/molecules18089770.Search in Google Scholar PubMed PubMed Central
113. Muhammad, I, Rahman, N, Gul-E-Nayab, Nishan, U, Shah, M. Antidiabetic activities of alkaloids isolated from MPs. Braz J Pharm Sci 2021;57. https://doi.org/10.1590/s2175-97902020000419130.Search in Google Scholar
114. Adhikari, B. Roles of alkaloids from MPs in the management of DM. J Chem 2021;2021:e2691525. https://doi.org/10.1155/2021/2691525.Search in Google Scholar
115. Sun, C, Zhao, C, Guven, EC, Paoli, P, Simal‐Gandara, J, Ramkumar, KM, et al.. Dietary polyphenols as antidiabetic agents: advances and opportunities. Food Front 2020;1:18–44. https://doi.org/10.1002/fft2.15.Search in Google Scholar
116. Qamar, M, Akhtar, S, Ismail, T, Wahid, M, Abbas, MW, Mubarak, MS, et al.. Phytochemical profile, biological properties, and food applications of the medicinal plant Syzygium cumini. Foods 2022;11:378. https://doi.org/10.3390/foods11030378.Search in Google Scholar PubMed PubMed Central
117. Kumar, A, Negi, AS, Chauhan, A, Semwal, R, Kumar, R, Semwal, RB, et al.. Formulation and evaluation of SGLT2 inhibitory effect of a polyherbal mixture inspired by Ayurvedic system of medicine. J Tradit Complement Med 2022;12:477–87. https://doi.org/10.1016/j.jtcme.2022.03.003.Search in Google Scholar PubMed PubMed Central
118. Semwal, DK, Badoni, R, Semwal, R, Kothiyal, SK, Singh, GJP, Rawat, U. The genus Stephania (Menispermaceae): chemical and pharmacological perspectives. J Ethnopharmacol 2010;132:369–83. https://doi.org/10.1016/j.jep.2010.08.047.Search in Google Scholar PubMed
119. Bose, MGA, Banerjee, A, Chattopadhyay, S. An insight into the potent medicinal plant Phyllanthus amarus Schum. and Thonn. Nucleus 2022;65:437–72. https://doi.org/10.1007/s13237-022-00409-z.Search in Google Scholar PubMed PubMed Central
120. Tamil, IG, Dineshkumar, B, Nandhakumar, M, Senthilkumar, M. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J Pharmacol 2010;42:280–2. https://doi.org/10.4103/0253-7613.70107.Search in Google Scholar PubMed PubMed Central
121. Contreras, C, Román, R, Pérez, C, Alarcón, F, Zavala, M, Pérez, S. Hypoglycemic activity of a new carbohydrate isolated from the roots of Psacalium peltatum. Chem Pharm Bull (Tokyo) 2005;53:1408–10. https://doi.org/10.1248/cpb.53.1408.Search in Google Scholar PubMed
122. Takada, K, Uehara, T, Nakao, Y, Matsunaga, S, van Soest, RWM, Fusetani, N. Schulzeines A-C, new alpha-glucosidase inhibitors from the marine sponge Penares schulzei. J Am Chem Soc 2004;126:187–93. https://doi.org/10.1021/ja037368r.Search in Google Scholar PubMed
123. Alonso-Castro, AJ, Zapata-Bustos, R, Romo-Yañez, J, Camarillo-Ledesma, P, Gómez-Sánchez, M, Salazar-Olivo, LA. The antidiabetic plants Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae) and Teucrium cubense Jacq (Lamiaceae) induce the incorporation of glucose in insulin-sensitive and insulin-resistant murine and human adipocytes. J Ethnopharmacol 2010;127:1–6. https://doi.org/10.1016/j.jep.2009.09.060.Search in Google Scholar PubMed
124. Costantino, L, Raimondi, L, Pirisino, R, Brunetti, T, Pessotto, P, Giannessi, F, et al.. Isolation and pharmacological activities of the Tecoma stans alkaloids. Farmaco 2003;58:781–5. https://doi.org/10.1016/S0014-827X(03)00133-2.Search in Google Scholar PubMed
125. Tsutsumi, T, Kobayashi, S, Liu, YY, Kontani, H. Anti-hyperglycemic effect of fangchinoline isolated from Stephania tetrandra Radix in streptozotocin-diabetic mice. Biol Pharm Bull 2003;26:313–17. https://doi.org/10.1248/bpb.26.313.Search in Google Scholar PubMed
126. Ohnishi, M, Matuo, T, Tsuno, T, Hosoda, A, Nomura, E, Taniguchi, H, et al.. Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors 2004;21:315–19. https://doi.org/10.1002/biof.552210161.Search in Google Scholar PubMed
127. Gayathri, M, Kannabiran, K. Antidiabetic activity of 2-hydroxy 4-methoxy benzoic acid isolated from the roots of Hemidesmus indicus on streptozotocin-induced diabetic rats. DDE 2009;17:53–7. https://doi.org/10.1159/000497673.Search in Google Scholar
128. Sohn, E, Kim, C-S, Kim, Y, Jung, DH, Jang, DS, Lee, YM, et al.. Effects of magnolol (5,5′-diallyl-2,2′-dihydroxybiphenyl) on diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats. Life Sci 2007;80:468–75. https://doi.org/10.1016/j.lfs.2006.09.037.Search in Google Scholar PubMed
129. Kobayashi, K, Ishihara, T, Khono, E, Miyase, T, Yoshizaki, F. Constituents of stem bark of Callistemon rigidus showing inhibitory effects on mouse alpha-amylase activity. Biol Pharm Bull 2006;29:1275–7. https://doi.org/10.1248/bpb.29.1275.Search in Google Scholar PubMed
130. Krenisky, JM, Luo, J, Reed, MJ, Carney, JR. Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae), a Peruvian medicinal plant used for the treatment of diabetes. Biol Pharm Bull 1999;22:1137–40. https://doi.org/10.1248/bpb.22.1137.Search in Google Scholar PubMed
131. Zhang, M, Chen, M, Zhang, H-Q, Sun, S, Xia, B, Wu, FH. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia 2009;80:475–7. https://doi.org/10.1016/j.fitote.2009.06.009.Search in Google Scholar PubMed
132. Basnet, P, Kadota, S, Terashima, S, Shimizu, M, Namba, T. Two new 2-aryl-benzofuran derivatives from hypoglycemic activity-bearing fractions of Morus insignis. Chem Pharm Bull (Tokyo) 1993;41:1238–43. https://doi.org/10.1248/cpb.41.1238.Search in Google Scholar PubMed
133. Kumar, D, Ghosh, R, Pal, B. α-Glucosidase inhibitory terpenoids from Potentilla fulgens and their quantitative estimation by validated HPLC method. J Funct Foods 2013;5:1135–41. https://doi.org/10.1016/j.jf.2013.03.010.Search in Google Scholar
134. Mbaze, LM, Poumale, HM, Wansi, JD, Lado, JA, Khan, SN, Iqbal, M, et al.. alpha-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry 2007;68:591595. https://doi.org/10.1016/j.phytochem.2006.12.015.Search in Google Scholar PubMed
135. Yen, FS, Qin, CS, Shi, XS, Ying, PJ, Le, HY, Darmarajan, T, et al.. Hypoglycemic effects of plant flavonoids: a review. Evid Based Complement Alternat Med 2021;2021:2057333.10.1155/2021/2057333Search in Google Scholar PubMed PubMed Central
136. Singh, S, Bansal, A, Singh, V, Chopra, T, Poddar, J. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of DM. J Diabetes Metab Disord 2022;21:941–50. https://doi.org/10.1007/s40200-021-00943-8.Search in Google Scholar PubMed PubMed Central
137. Ha, DT, Tuan, DT, Thu, NB, Nhiem, NX, Ngoc, TM, Yim, N, et al.. Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 Cells. Bioorg Med Chem Lett 2009;19:5556–9. https://doi.org/10.1016/j.bmcl.2009.08.048.Search in Google Scholar PubMed
138. Guerrero-Analco, JA, Martineau, L, Saleem, A, Madiraju, P, Muhammad, A, Durst, T, et al.. Bioassay-guided isolation of the antidiabetic principle from Sorbus decora (Rosaceae) used traditionally by the Eeyou Istchee Cree First nations. J Nat Prod 2010;73:1519–23. https://doi.org/10.1021/np1003005.Search in Google Scholar PubMed
139. Raga, DD, Espiritu, RA, Shen, C-C, Ragasa, CY. A bioactive sesquiterpene from Bixa orellana. J Nat Med 2011;65:206–11. https://doi.org/10.1007/s11418-010-0459-9.Search in Google Scholar PubMed
140. Deutschländer, MS, Lall, N, Van de Venter, M, Hussein, AA. Hypoglycemic evaluation of a new triterpene and other compounds isolated from Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark. J Ethnopharmacol 2011;133:1091–5. https://doi.org/10.1016/j.jep.2010.11.038.Search in Google Scholar PubMed
141. Hou, C-C, Lin, S-J, Cheng, J-T, Hsu, F-L. Antidiabetic dimeric guianolides and a lignan glycoside from Lactuca indica. J Nat Prod 2003;66:625–9. https://doi.org/10.1021/np0205349.Search in Google Scholar PubMed
142. Hosein, NEL. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assafoetida oleo-gum-resin extract in streptozotocin-induced diabetic Wistar rats - PubMed. https://pubmed.ncbi.nlm.nih.gov/30471513/ [Accessed 28 Feb 2023].Search in Google Scholar
143. Singh, AB, Yadav, DK, Maurya, R, Srivastava, AK. Antihyperglycaemic activity of alpha-amyrin acetate in rats and db/db mice. Nat Prod Res 2009;23:876–82. https://doi.org/10.1080/14786410802420416.Search in Google Scholar PubMed
144. Sato, M, Tai, T, Nunoura, Y, Yajima, Y, Kawashima, S, Tanaka, K. Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent DM to insulin. Biol Pharm Bull 2002;25:81–6. https://doi.org/10.1248/bpb.25.81.Search in Google Scholar PubMed
145. Judy, WV, Hari, SP, Stogsdill, WW, Judy, JS, Naguib, YM, Passwater, R. Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves in Type II diabetics. A dose-dependence study. J Ethnopharmacol 2003;87:115–17. https://doi.org/10.1016/s0378-8741(03)00122-3.Search in Google Scholar PubMed
146. Jeppesen, PB, Gregersen, S, Alstrup, KK, Hermansen, K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 2002;9:9–14. https://doi.org/10.1078/0944-7113-00081.Search in Google Scholar PubMed
147. Omar, HS, El-Beshbishy, HA, Moussa, Z, Taha, KF, Singab, ANB. Antioxidant activity of Artocarpus heterophyllus Lam. (Jack Fruit) leaf extracts: remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats. Sci World J 2011;11:788–800. https://doi.org/10.1100/tsw.2011.71.Search in Google Scholar PubMed PubMed Central
148. Adaramoye, OA, Adeyemi, EO. Hypoglycaemic and hypolipidaemic effects of fractions from kolaviron, a biflavonoid complex from Garcinia Kola in streptozotocin-induced DM rats. J Pharm Pharmacol 2010;58:121–8. https://doi.org/10.1211/jpp.58.1.0015.Search in Google Scholar PubMed
149. Kawabata, J, Mizuhata, K, Sato, E, Nishioka, T, Aoyama, Y, Kasai, T. 6-hydroxyflavonoids as alpha-glucosidase inhibitors from marjoram (Origanum majorana) leaves. Biosci Biotechnol Biochem 2003;67:445–7. https://doi.org/10.1271/bbb.67.445.Search in Google Scholar PubMed
150. Nishioka, T, Kawabata, J, Aoyama, Y. Baicalein, an alpha-glucosidase inhibitor from Scutellaria baicalensis. J Nat Prod 1998;61:1413–15. https://doi.org/10.1021/np980163p.Search in Google Scholar PubMed
151. Lee, MS, Kim, CH, Hoang, DM, Kim, BY, Sohn, CB, Kim, MR, et al.. Genistein-derivatives from Tetracera scandens stimulate glucose-uptake in L6 myotubes. Biol Pharm Bull 2009;32:504–8. https://doi.org/10.1248/bpb.32.504.Search in Google Scholar PubMed
152. Kim, HY, Moon, BH, Lee, HJ, Choi, DH. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. J Ethnopharmacol 2004;93:227–30. https://doi.org/10.1016/j.jep.2004.03.047.Search in Google Scholar PubMed
153. Revilla-Monsalve, MC, Andrade-Cetto, A, Palomino-Garibay, MA, Wiedenfeld, H, Islas-Andrade, S. Hypoglycemic effect of Cecropia obtusifolia Bertol aqueous extracts on type 2 diabetic patients. J Ethnopharmacol 2007;111:636–40. https://doi.org/10.1016/j.jep.2007.01.014.Search in Google Scholar PubMed
154. Tabopda, TK, Ngoupayo, J, Awoussong, PK, Mitaine-Offer, AC, Ali, MS, Ngadjui, BT, et al.. Triprenylated flavonoids from Dorstenia psilurus and their alpha-glucosidase inhibition properties. J Nat Prod 2008;71:2068–72. https://doi.org/10.1021/np800509u.Search in Google Scholar PubMed
155. Lino, Cde S, Diógenes, JPL, Pereira, BA, Faria, RAPG, Andrade Neto, M, Alves, RS, et al.. Antidiabetic activity of Bauhinia forficata extracts in alloxan-diabetic rats. Biol Pharm Bull 2004;27:125–7. https://doi.org/10.1248/bpb.27.125.Search in Google Scholar PubMed
156. Nawel, M, Dib, M, Allali, H, Boufeldja, T. Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 2011;1:468–71. https://doi.org/10.1016/S2221-1691(11)60102-0.Search in Google Scholar PubMed PubMed Central
157. El, BA, Hussein, S, Alm-Eldeen, A, Hafez, A, Mohamed, T. Saponins and their potential role in diabetes mellitus. Diabetes Manag 2017;7:148–58.Search in Google Scholar
158. Philpott, DJ, Butzner, JD, Meddings, JB. Regulation of intestinalglucose transport. Can J Physiol Pharmacol 1992;70:1201–7. https://doi.org/10.1139/y92-167.Search in Google Scholar PubMed
159. Kumari, M, Jain, S. Tannins: an anti-nutrient with positive effect to manage diabetes. Res J Recent Sci 2012;1:70–3.Search in Google Scholar
160. Kim, MJ, Ryu, GR, Chung, JS, Sim, SS, Min, DS, Rhie, DJ, et al.. Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: in vivo and in vitro. Pancreas 2003;26:292–9. https://doi.org/10.1097/00006676-200304000-00014.Search in Google Scholar PubMed
161. Eliza, J, Daisy, P, Ignacimuthu, S, Duraipandiyan, V. Normo-glycemic and hypolipidemic efect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chem Biol Interact 2009;179:329–34. https://doi.org/10.1016/j.cbi.2008.10.017.Search in Google Scholar PubMed
162. Naik, SR, Barbosa Filho, JM, Dhuley, JN, Deshmukh, V. Probable mechanism of hypoglycemic activity of bassic acid, a natural product isolated from Bumelia sartorum. J Ethnopharmacol 1991;33:37–44. https://doi.org/10.1016/0378-8741(91)90158-a.Search in Google Scholar PubMed
163. Wang, HY, Kan, WC, Cheng, TJ, Yu, SH, Chang, LH, Chuu, JJ. Differential anti-diabetic effects and mechanism of action of the charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem Toxicol 2014;69:347–56. https://doi.org/10.1016/j.fct.2014.04.008.Search in Google Scholar PubMed
164. Morikawa, T, Kishi, A, Pongpiriyadacha, Y, Matsuda, H, Yoshikawa, M. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J Nat Prod 2003;66:1191–6. https://doi.org/10.1021/np0301543.Search in Google Scholar PubMed
165. Kishi, A, Morikawa, T, Matsuda, H, Yoshikawa, M. Structures of new friedelane- and norfriedelane-type triterpenes and polyacylatedeudesmane-type sesquiterpene from Salacia chinensis Linn. (S. prinoides DC. Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull 2003;51:1051–5. https://doi.org/10.1248/cpb.51.105.Search in Google Scholar
166. Tan, MJ, Ye, JM, Turner, N, Hohnen-Behrens, C, Ke, CQ, Tang, CP, et al.. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 2008;5:263–73. https://doi.org/10.1016/j.chembiol.2008.01.013.Search in Google Scholar PubMed
167. Tahira, S, Hussain, F. Antidiabetic evaluation of Momordica charantia L. fruit extracts. West Indian Med 2014;J63:294–9. https://doi.org/10.7727/wimj.2013.180.Search in Google Scholar PubMed PubMed Central
168. Prasad, S, Kalra, N, Shukla, Y. Hepatoprotective effects of lupeol and mango pulp extract of carcinogen-induced alteration in Swiss albino mice. Mol Nutr Food Res 2007;51:352–9. https://doi.org/10.1002/mnfr.200600113.Search in Google Scholar PubMed
169. Panigrahy, SK, Bhatt, R, Kumar, A. Targeting type II diabetes with plant terpenes: the new and promising antidiabetic therapeutics. Biologia 2021;76:241–54. https://doi.org/10.2478/s11756-020-00575-y.Search in Google Scholar
170. Samarghandian, S, Borji, A, Delkhosh, MB, Samini, F. Safranal treatment improves hyperglycemia, hyperlipidemia, and oxidative stress in streptozotocin-induced diabetic rats. J Pharm Pharmaceut Sci 2013;16:352–62. https://doi.org/10.18433/j3zs3q.Search in Google Scholar PubMed
171. Madikizela, B, Ndhlala, AR, Rengasamy, KRR, McGaw, L, Van Staden, J. Pharmacological evaluation of two South African commercial herbal remedies and their plant constituents. South Afr J Bot 2017;111:291–8. https://doi.org/10.1016/j.sajb.2017.03.038.Search in Google Scholar
172. Modak, M, Dixit, P, Londhe, J, Ghaskadbi, S, Devasagayam, TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 2007;40:163–73. https://doi.org/10.3164/jcbn.40.163.Search in Google Scholar PubMed PubMed Central
173. Muneeswari, VS, Manasa, A, Sri, AS, Sujitha, V. Possible role of heme oxygenase (ho)-1 in the anti-cataract activity of diabecon (d-400) in hyperglycemia-induced cataract in cultured goat lens. World J Pharmaceut Res 2022;11:1291–327. https://doi.org/10.20959/wjpr202211-25115.Search in Google Scholar
174. Vendrame, S, Daugherty, A, Kristo, AS, Riso, P, Klimis-Zacas, D. Wild blueberry (Vaccinium angustifolium) consumption improves inflammatory status in the obese Zucker rat model of the metabolic syndrome. J Nutr Biochem 2013;24:1508–12. https://doi.org/10.1016/j.jnutbio.2012.12.010.Search in Google Scholar PubMed
175. Andallu, B, Radhika, B, Suryakantham, V. Effect of aswagandha, ginger and mulberry on hyperglycemia and hyperlipidemia. Plant Foods Hum Nutr 2003;58:1–7. https://doi.org/10.1023/b:qual.0000040352.23559.04.10.1023/B:QUAL.0000040352.23559.04Search in Google Scholar
176. Baldwa, VS, Bhandari, CM, Pangaria, A, Goyal, RK. Clinical trial in patients with DM of an insulin-like compound obtained from the plant source. Ups J Med Sci 1977;82:39–41. https://doi.org/10.3109/03009737709179057.Search in Google Scholar PubMed
177. Nagao, T, Meguro, S, Hase, T, Otsuka, K, Komikado, M, Tokimitsu, I, et al.. A catechin‐rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity 2009;17:310–17. https://doi.org/10.1038/oby.2008.505.Search in Google Scholar PubMed
178. Khan, A, Safdar, M, Ali Khan, MM, Khattak, KN, Anderson, RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003;26:3215–18. https://doi.org/10.2337/diacare.26.12.3215.Search in Google Scholar PubMed
179. Kodera, T, Yamada, S, Yamamoto, Y, Hara, A, Tanaka, Y, Seno, M, et al.. Administration of conophylline and betacellulin-δ4 increases the β-cell mass in neonatal streptozotocin-treated rats. Endocr J 2009;56:799–806. https://doi.org/10.1507/endocrj.k09e-158.Search in Google Scholar PubMed
180. Ogata, T, Li, L, Yamada, S, Yamamoto, Y, Tanaka, Y, Takei, I, et al.. Promotion of β-cell differentiation by conophylline in fetal and neonatal rat pancreas. Diabetes 2004;53:2596–602. https://doi.org/10.2337/diabetes.53.10.2596.Search in Google Scholar PubMed
181. Muller, CF, Joubert, E, De Beer, D, Sanderson, M, Malherbe, CJ, Fey, SJ, et al.. Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine 2012;20:32–9. https://doi.org/10.1016/j.phymed.2012.09.010.Search in Google Scholar PubMed
182. Carlson, TJ, King, SR, Reaven, GM. From plant to patient: an ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia 1997;40:614–17. https://doi.org/10.1007/s001250050724.Search in Google Scholar PubMed
183. Jayant, SK, Srivastava, N. Effect of Ocimum sanctum against alloxan-induced diabetes and biochemical alterations in rats. Integr Obesity Diabetes 2016;2:1–4. https://doi.org/10.15761/iod.1000162.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review
- Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook
- Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment
- Pharmacological and toxicological profile of the Stachys lavandulifolia Vahl: a comprehensive review
- Research Articles
- Essential oil composition, in vitro antidiabetic, cytotoxicity, antimicrobial, antioxidant activity, and in silico molecular modeling analysis of secondary metabolites from Justicia schimperiana
- French marigold (Tagetes patula) flavonoid extract-based priming ameliorates initial drought stress on Oryza sativa var indica, cultivar Satabdi (IET4786): a sustainable approach to avoid initial drought stress
- Assessing the molecular interaction between a COVID-19 drug, nirmatrelvir, and human serum albumin: calorimetric, spectroscopic, and microscopic investigations
- Insight into in vitro thymidine phosphorylase and in silico molecular docking studies: identification of hybrid thiazole bearing Schiff base derivatives
- In vivo evaluation of the antinociceptive effects of novel methylsulfonyl group-containing compounds
Articles in the same Issue
- Frontmatter
- Review Articles
- Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review
- Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook
- Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment
- Pharmacological and toxicological profile of the Stachys lavandulifolia Vahl: a comprehensive review
- Research Articles
- Essential oil composition, in vitro antidiabetic, cytotoxicity, antimicrobial, antioxidant activity, and in silico molecular modeling analysis of secondary metabolites from Justicia schimperiana
- French marigold (Tagetes patula) flavonoid extract-based priming ameliorates initial drought stress on Oryza sativa var indica, cultivar Satabdi (IET4786): a sustainable approach to avoid initial drought stress
- Assessing the molecular interaction between a COVID-19 drug, nirmatrelvir, and human serum albumin: calorimetric, spectroscopic, and microscopic investigations
- Insight into in vitro thymidine phosphorylase and in silico molecular docking studies: identification of hybrid thiazole bearing Schiff base derivatives
- In vivo evaluation of the antinociceptive effects of novel methylsulfonyl group-containing compounds