Startseite Lebenswissenschaften Sphingolipids in medicinal mushrooms: structural insights, biological activities, and therapeutic potential
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sphingolipids in medicinal mushrooms: structural insights, biological activities, and therapeutic potential

  • Yhiya Amen ORCID logo EMAIL logo , Ahmed Othman ORCID logo und Kuniyoshi Shimizu ORCID logo
Veröffentlicht/Copyright: 1. Mai 2025

Abstract

Edible mushrooms are well-known for their nutritional value, serving as rich sources of bioactive nutrients, mainly proteins, carbohydrates, lipids, vitamins, and minerals that are vital for human health. Lipids, integral to biological functions such as cellular structure and energy storage, play crucial roles in mushrooms’ bioactivity. Sphingolipids, an important class of lipids, serve not only as structural elements in cell membranes but also act as bioactive molecules, playing key roles in cancer prevention, skin health, and infection control. Recent studies highlight their unique presence in mushrooms. Despite their relatively low abundance, sphingolipids in mushrooms are pivotal in cellular processes and offer therapeutic potential. Advances in analytical techniques have facilitated the characterization of these compounds. This review explores the structural profiles, biological activities, and therapeutic applications of sphingolipids in medicinal mushrooms, highlighting their potential in the development of functional foods and novel therapeutic agents.


Corresponding author: Yhiya Amen, Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Yhiya Amen: conceptualization. Yhiya Amen and Ahmed Othman: data collection, analysis of reports, and preparation of the manuscript draft. Kuniyoshi Shimizu: reviewing, editing, and approving the final manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ji, L, Tan, L, Shang, Z, Li, W, Mo, X, Yang, S, et al.. Discovery of new antimicrobial metabolites in the coculture of medicinal mushrooms. J Agric Food Chem 2024;72:5247–57. https://doi.org/10.1021/acs.jafc.3c09476.Suche in Google Scholar PubMed

2. Bains, A, Chawla, P, Kaur, S, Najda, A, Fogarasi, M, Fogarasi, S. Bioactives from mushroom: health attributes and food industry applications. Materials 2021;14:7640. https://doi.org/10.3390/ma14247640.Suche in Google Scholar PubMed PubMed Central

3. Niego, AG, Rapior, S, Thongklang, N, Raspé, O, Jaidee, W, Lumyong, S, et al.. Macrofungi as a nutraceutical source: promising bioactive compounds and market value. Journal of Fungi 2021;7:397. https://doi.org/10.3390/jof7050397.Suche in Google Scholar PubMed PubMed Central

4. Niego, AGT, Lambert, C, Mortimer, P, Thongklang, N, Rapior, S, Grosse, M, et al.. The contribution of fungi to the global economy. Fungal Divers 2023;121:95–137. https://doi.org/10.1007/s13225-023-00520-9.Suche in Google Scholar

5. Liu, J, Kurashiki, K, Shimizu, K, Kondo, R. Structure–activity relationship for inhibition of 5α-reductase by triterpenoids isolated from Ganoderma lucidum. Bioorg Med Chem 2006;14:8654–60. https://doi.org/10.1016/j.bmc.2006.08.018.Suche in Google Scholar PubMed

6. Zhu, Q, Bang, TH, Ohnuki, K, Sawai, T, Sawai, K, Shimizu, K. Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design. Sci Rep 2015;5:13194. https://doi.org/10.1038/srep13194.Suche in Google Scholar PubMed PubMed Central

7. Amen, YM, Zhu, Q, Afifi, MS, Halim, AF, Ashour, A, Shimizu, K. New cytotoxic lanostanoid triterpenes from Ganoderma lingzhi. Phytochem Lett 2016;17:64–70. https://doi.org/10.1016/J.PHYTOL.2016.07.024.Suche in Google Scholar

8. Amen, Y, Zhu, Q, Tran, H-B, Afifi, MS, Halim, AF, Ashour, A, et al.. Partial contribution of rho-Kinase inhibition to the bioactivity of Ganoderma Lingzhi and its isolated compounds: insights on discovery of natural Rho-Kinase inhibitors. J Nat Med 2017;17:380–8. https://doi.org/10.1007/s11418-016-1069-y.Suche in Google Scholar PubMed

9. Tamrakar, S, Tran, HB, Nishida, M, Kaifuchi, S, Suhara, H, Doi, K, et al.. Antioxidative activities of 62 wild mushrooms from Nepal and the phenolic profile of some selected species. J Nat Med 2016;70:769–79. https://doi.org/10.1007/s11418-016-1013-1.Suche in Google Scholar PubMed

10. Amen, YM, Zhu, Q, Tran, H-B, Afifi, MS, Halim, AF, Ashour, A, et al.. Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells. J Nat Med 2016;70:661–6. https://doi.org/10.1007/s11418-016-0976-2.Suche in Google Scholar PubMed

11. Satria, D, Amen, Y, Niwa, Y, Ashour, A, Allam, AE, Shimizu, K, et al., Lucidumol D, A new lanostane-type triterpene from fruiting bodies of reishi (Ganoderma lingzhi). Nat Prod Res 2018;33:189–95. https://doi.org/10.1080/14786419.2018.1440229.Suche in Google Scholar PubMed

12. Ruan, Y, Han, C, Wang, D, Inoue, Y, Amen, Y, Othman, A, et al.. New benzaldehyde derivatives from the fruiting bodies of hericium Erinaceus with cytotoxic activity. Nat Prod Res 2023;37:4089–98. https://doi.org/10.1080/14786419.2023.2169687.Suche in Google Scholar PubMed

13. Zhu, Q, Amen, YM, Ohnuki, K, Shimizu, K. Anti-influenza effects of Ganoderma lingzhi: an animal study. J Funct Foods 2017;34:224–8. https://doi.org/10.1016/j.jff.2017.04.040.Suche in Google Scholar

14. Storck, EM, Özbalci, C, Eggert, US. Lipid cell biology: a focus on lipids in cell division. Annu Rev Biochem 2018;87:839–69. https://doi.org/10.1146/annurev-biochem-062917-012448.Suche in Google Scholar PubMed

15. Yamashita, S, Soga, M, Nguma, E, Kinoshita, M, Miyazawa, T. Protective mechanism of rice-derived lipids and glucosylceramide in an in VitroIntestinal tract model. J Agric Food Chem 2021;69:10206–14. https://doi.org/10.1021/acs.jafc.1c04562.Suche in Google Scholar PubMed

16. Matsuzawa, Y, Higashi, Y, Takano, K, Takahashi, M, Yamada, Y, Okazaki, Y, et al.. Food lipidomics for 155 agricultural plant products. J Agric Food Chem 2021;69:8981–90. https://doi.org/10.1021/acs.jafc.0c07356.Suche in Google Scholar PubMed

17. Amen, Y, Othman, A, Shimizu, K. Phospholipid profiles in mushrooms: a review of extraction, analysis, and functional applications. Int J Med Mushrooms 2025;27:1–10. https://doi.org/10.1615/INTJMEDMUSHROOMS.2024057381.Suche in Google Scholar

18. Proštenik, M, Ćosović, Č. Lipids of higher fungi. II. The nature of cerebrins and cerebrosides from the mushroom Clitocybe tabescens scop. Chem Phys Lipids 1974;13:117–22. https://doi.org/10.1016/0009-3084(74)90026-7.Suche in Google Scholar PubMed

19. Weiss, B, Stiller, RL. Sphingolipids of mushrooms. Biochemistry 1972;11:4552–7. https://doi.org/10.1021/BI00774A019/ASSET/BI00774A019.FP.PNG_V03.Suche in Google Scholar

20. Weiss, B, Stiller, RL, Cecil, R, Jack, M. Sphingolipids of the fungi Phycomycetes blakesleeanus and Fusarium lini. Lipids 1973;8:25–30. https://doi.org/10.1007/BF02533235.Suche in Google Scholar PubMed

21. Kolter, T, Sandhoff, K. Sphingolipids – their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angew Chem Int Ed 1999;38:1532–68. https://doi.org/10.1002/(sici)1521-3773(19990601)38:11<1532::aid-anie1532>3.0.co;2-u.10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-USuche in Google Scholar

22. Symolon, H, Schmelz, EM, Dillehay, DL, Merrill, AH. Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. Proc J Nutr 2004;134:1157–61. https://doi.org/10.1093/jn/134.5.1157.Suche in Google Scholar

23. Aida, K, Kinoshita, M, Sugawara, T, Ono, J, Miyazawa, T, Ohnishi, M. Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells. J Oleo Sci 2004;53:503–10. https://doi.org/10.5650/jos.53.503.Suche in Google Scholar

24. Schmelz, EM, Sullards, MC, Dillehay, DL, Merrill, AH. Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J Nutr 2000;130:522–7. https://doi.org/10.1093/jn/130.3.522.Suche in Google Scholar

25. Kim, SY, Choi, YH, Huh, H, Kim, J, Kim, YC, Lee, HS. New antihepatotoxic cerebroside from lycium chinense fruits. J Nat Prod 1997;60:274–6. https://doi.org/10.1021/np960670b.Suche in Google Scholar

26. Choi, JH, Yoshida, M, Suzuki, T, Harada, E, Kawade, M, Yazawa, K, et al.. A novel sphingosine with osteoclast-forming suppressing activity, from the edible mushroom Grifola gargal. Tetrahedron 2013;69:8609–11. https://doi.org/10.1016/j.tet.2013.07.068.Suche in Google Scholar

27. Natori, T, Morita, M, Akimoto, K, Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge agelas mauritianus. Tetrahedron 1994;50:2771–84. https://doi.org/10.1016/S0040-4020(01)86991-X.Suche in Google Scholar

28. Li, W, Belwal, T, Li, L, Xu, Y, Liu, J, Zou, L, et al.. Sphingolipids in foodstuff: compositions, distribution, digestion, metabolism and health effects – a comprehensive review. Food Res Int 2021;147:110566. https://doi.org/10.1016/j.foodres.2021.110566.Suche in Google Scholar

29. Yazawa, M, Kubota, T, Kaneko, Y, Otsuka, Y, Onuki, Y, Nanakubo, H, et al.. A new method for the preparation of a purified glucosylceramide and ceramide from shiitake mushroom. Biosci Biotechnol Biochem 2022;86:1680–7. https://doi.org/10.1093/bbb/zbac157.Suche in Google Scholar

30. Asai, S, Miyachi, H. Evaluation of skin-moisturizing effects of oral or percutaneous use of plant ceramides. Rinsho Byori (in Japanese). Jpn J Clin Pathol 2007;55.Suche in Google Scholar

31. Tsuji, K, Mitsutake, S, Ishikawa, J, Takagi, Y, Akiyama, M, Shimizu, H, et al.. Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 2006;44:101–7. https://doi.org/10.1016/j.jdermsci.2006.08.005.Suche in Google Scholar

32. Kunz, TC, Kozjak-Pavlovic, V. Diverse facets of sphingolipid involvement in bacterial infections. Front Cell Dev Biol 2019;7. https://doi.org/10.3389/fcell.2019.00203.Suche in Google Scholar PubMed PubMed Central

33. Jutanom, M, Higaki, C, Yamashita, S, Nakagawa, K, Matsumoto, S, Kinoshita, M. Effects of sphingolipid fractions from golden oyster mushroom (Pleurotus citrinopileatus) on apoptosis induced by inflammatory stress in an intestinal tract in vitro model. J Oleo Sci 2020;69:1087–93 . https://doi.org/10.5650/jos.ess20105.Suche in Google Scholar PubMed

34. Yamashita, S, Seino, T, Inobe, M, Jutanom, M, Matsumoto, S, Kinoshita, M. Polar lipid fraction from golden oyster mushrooms (Pleurotus citrinopileatus) suppresses colon injuries from inflammatory stresses in vivo and in vitro. J Oleo Sci 2020;69:751–7. https://doi.org/10.5650/jos.ess20050.Suche in Google Scholar PubMed

35. Ohta, K, Hiraki, S, Miyanabe, M, Ueki, T, Aida, K, Manabe, Y, et al.. Appearance of intact molecules of dietary ceramides prepared from soy sauce lees and rice glucosylceramides in mouse plasma. J Agric Food Chem 2021;69:9188–98. https://doi.org/10.1021/acs.jafc.0c07259.Suche in Google Scholar PubMed

36. Sugawara, T. Sphingolipids as functional food components: benefits in skin improvement and disease prevention. J Agric Food Chem 2022;70:9597–609. https://doi.org/10.1021/acs.jafc.2c01731.Suche in Google Scholar PubMed

37. Yamashita, S, Kinoshita, M, Miyazawa, T. Dietary sphingolipids contribute to health via intestinal maintenance. Int J Mol Sci 2021;22:7052. https://doi.org/10.3390/ijms22137052.Suche in Google Scholar PubMed PubMed Central

38. Kawai, G. Molecular species of cerebrosides in fruiting bodies of Lentinus edodes and their biological activity. Biochim Biophys Acta (BBA)/Lipids Lipid Metabol 1989;1001:185–90. https://doi.org/10.1016/0005-2760(89)90146-X.Suche in Google Scholar PubMed

39. Kawai, G, Ikeda, Y, Tubaki, K. Fruiting of Schizophyllum commune induced by certain ceramides and cerebrosides from Penicillium funiculosum. Agric Biol Chem 1985;49:2137–46. https://doi.org/10.1080/00021369.1985.10867040.Suche in Google Scholar

40. Folch, J, Lees, M, Sloane Stanley, GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497–509. https://doi.org/10.1016/s0021-9258(18)64849-5.Suche in Google Scholar

41. Yamashita, S, Akada, K, Matsumoto, S, Kinoshita, M. Effects of Dietary Ethanol Extract from Fruiting Bodies of Golden Oyster Mushroom (Pleurotus Citrinopileatus) on Chronic Colon Inflammation in Mice Treated with Dextran Sulfate Sodium Salt. Mushroom Sci Biotechnol 2020;28:7–14.Suche in Google Scholar

42. Saini, RK, Prasad, P, Shang, X, Keum, YS. Advances in lipid extraction methods—a review. Int J Mol Sci 2021;22:13643. https://doi.org/10.3390/ijms222413643.Suche in Google Scholar PubMed PubMed Central

43. Dos Santos, RR, Moreira, DM, Kunigami, CN, Aranda, DAG, Teixeira, CMLL. Comparison between several methods of total lipid extraction from chlorella vulgaris biomass. Ultrason Sonochem 2015;22:95–9. https://doi.org/10.1016/j.ultsonch.2014.05.015.Suche in Google Scholar PubMed

44. Yamashita, S, Honjo, A, Aruga, M, Nakagawa, K, Miyazawa, T. Preparation of marine plasmalogen and selective identification of molecular species by LC-MS/MS. J Oleo Sci 2014;63:423–30. https://doi.org/10.5650/jos.ess13188.Suche in Google Scholar PubMed

45. Sawabe, A, Morita, M, Ouchi, S, Okamoto, T. B/E constant linked scan fast atom bombardment analysis of a new type of glycosyl phosphosphingolipid isolated from edible fungi (mushroom). J Mass Spectrom Soc Jpn 1995;43:115–20. https://doi.org/10.5702/massspec.43.115.Suche in Google Scholar

46. Sawabe, A, Morita, M, Okamoto, T, Ouchi, S. The location of double bonds in a cerebroside from edible fungi (mushroom) estimated by B/E linked scan fast atom bombardment mass spectrometry. Biol Mass Spectrom 1994;23:660–4. https://doi.org/10.1002/BMS.1200231103.Suche in Google Scholar

47. Cosovic, C, Jandric, Z, Prostenik, M. Lipids of higher fungi. I. Mycoglycolipids, a new class of complex lipids of mushrooms. Bull Sci Sec A: Sci Nat Tech Med (Zagreb) 1974;19:2–3.Suche in Google Scholar

48. Striegler, S, Haslinger, E. Cerebrosides from Fomitopsis pinicola (Sw. Ex Fr.) Karst. Monatshefte für Chemie Chemical Monthly 1996;127:755–61. https://doi.org/10.1007/bf00817267.Suche in Google Scholar

49. Sawabe, A, Morita, M, Ouchi, S, Okamoto, T. B/E linked scan fast atom bombardment analyses of sphingolipids isolated from mushrooms. Adv Mass Spectrom 1998;14:C062760/1-C062760/13.Suche in Google Scholar

50. Gao, JM, Dong, ZJ, Liu, JK. A new ceramide from the basidiomycete Russula cyanoxantha. Lipids 2001;36:175–81. https://doi.org/10.1007/s11745-001-0704-x.Suche in Google Scholar PubMed

51. Gao, JM, Hu, L, Dong, ZJ, Liu, JK. New glycosphingolipid containing an unusual sphingoid base from the basidiomycete Polyporus ellisii. Lipids 2001;36:521–7. https://doi.org/10.1007/s11745-001-0752-2.Suche in Google Scholar PubMed

52. Gao, JM, Yang, X, Wang, CY, Liu, JK. Armillaramide, a new sphingolipid from the fungus Armillaria mellea. Fitoterapia 2001;72:858–64. https://doi.org/10.1016/S0367-326X(01)00319-7.Suche in Google Scholar PubMed

53. Takakuwa, N, Tanji, M, Oda, Y, Ohnishi, M. Distribution of 9-methyl sphingoid base in mushrooms and its effects on the fluidity of phospholipid liposomes. J Oleo Sci 2002;51:741–7. https://doi.org/10.5650/jos.51.741.Suche in Google Scholar

54. Kang, HS, Jin, HC, Won, KC, Jong, CP, Jae, SC. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch Pharm Res 2004;27:742–50. https://doi.org/10.1007/BF02980143.Suche in Google Scholar PubMed

55. Meng, TX, Ishikawa, H, Shimizu, K, Ohga, S, Kondo, R. A glucosylceramide with antimicrobial activity from the edible mushroom Pleurotus citrinopileatus. J Wood Sci 2012;58:81–6. https://doi.org/10.1007/s10086-011-1213-y.Suche in Google Scholar

56. Gamboa-Becerra, R, Montoya, L, Bandala, VM, Monribot-Villanueva, JL, Guerrero-Analco, JA, Ramos, A. Metabolomic profiling, nutritional parameters and potential bioactive metabolites of the edible mushroom tricholoma mesoamericanum. Int J Food Sci Technol 2024;59:4348–58. https://doi.org/10.1111/IJFS.17121.Suche in Google Scholar

57. Fan, J, Wang, D, Kaneko, S, Shimizu, K. Lipidomic profiling of Flammulina velutipes (curtis) singer (agaricomycetes) through ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry: examining lipid dynamics changes during fruiting body formation and development. J Agric Food Chem 2024;72:18271–82. https://doi.org/10.1021/ACS.JAFC.4C03863.Suche in Google Scholar

58. Parashuraman, S, D’Angelo, G. Visualizing sphingolipid biosynthesis in cells. Chem Phys Lipids 2019;218:103–11. https://doi.org/10.1016/j.chemphyslip.2018.11.003.Suche in Google Scholar PubMed

59. Gault, CR, Obeid, LM, Hannun, YA. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 2010;688:1–23. https://doi.org/10.1007/978-1-4419-6741-1_1.Suche in Google Scholar PubMed PubMed Central

Received: 2024-09-24
Accepted: 2025-04-15
Published Online: 2025-05-01
Published in Print: 2026-01-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2024-0206/html
Button zum nach oben scrollen