Abstract
Garcinia mangostana fruits are used traditionally for inflammatory skin conditions, including acne. In this study, an in silico approach was employed to predict the interactions of G. mangostana xanthones and benzophenones with three proteins involved in the pathogenicity of acne, namely the human JNK1, Cutibacterium acnes KAS III and exo-β-1,4-mannosidase. Molecular docking analysis was performed using Autodock Vina. The highest docking scores and size-independent ligand efficiency values towards JNK1, C. acnes KAS III and exo-β-1,4-mannosidase were obtained for garcinoxanthone T, gentisein/2,4,6,3′,5′-pentahydroxybenzophenone and mangostanaxanthone VI, respectively. To the best of our knowledge, this is the first report of the potential of xanthones and benzophenones to interact with C. acnes KAS III. Molecular dynamics simulations using GROMACS indicated that the JNK1-garcinoxanthone T complex had the highest stability of all ligand–protein complexes, with a high number of hydrogen bonds predicted to form between this ligand and its target. Petra/Osiris/Molinspiration (POM) analysis was also conducted to determine pharmacophore sites and predict the molecular properties of ligands influencing ADMET. All ligands, except for mangostanaxanthone VI, showed good membrane permeability. Garcinoxanthone T, gentisein and 2,4,6,3′,5′-pentahydroxybenzophenone were identified as the most promising compounds to explore further, including in experimental studies, for their anti-acne potential.
Acknowledgements
NB would like to thank the Oleg Polunin Memorial Trust and Modern Botany Ltd for contributing to her PhD scholarship.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. NB and ZBA conducted the in silico study. VS and DR supervised the work. VS, NB and ZBA designed the study, analysed the results and prepared the manuscript. VS, NB, and ZBA drafted the original manuscript. VS, DR, NB and SJ finalised the manuscript.
-
Competing Interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Layton, AM, Thiboutot, D, Tan, J. Reviewing the global burden of acne: how could we improve care to reduce the burden?. Br J Dermatol 2021;184:219–25. https://doi.org/10.1111/bjd.19477.Suche in Google Scholar PubMed
2. Cong, TX, Hao, D, Wen, X, Li, XH, He, G, Jiang, X. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatol Res 2019;311:337–49. https://doi.org/10.1007/s00403-019-01908-x.Suche in Google Scholar PubMed
3. Dréno, B, Pécastaings, S, Corvec, S, Veraldi, S, Khammari, A, Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 2018;32:5–14. https://doi.org/10.1111/jdv.15043.Suche in Google Scholar PubMed
4. Habeshian, KA, Cohen, BA. Current issues in the treatment of acne vulgaris. Pediatrics 2020;145:s225–30. https://doi.org/10.1542/peds.2019-2056l.Suche in Google Scholar
5. Sevimli Dikicier, B. Topical treatment of acne vulgaris: efficiency, side effects, and adherence rate. J Int Med Res 2019;47:2987–92. https://doi.org/10.1177/0300060519847367.Suche in Google Scholar PubMed PubMed Central
6. Karadag, AS, Aslan Kayıran, M, Wu, CY, Chen, W, Parish, LC. Antibiotic resistance in acne: changes, consequences and concerns. J Eur Acad Dermatol Venereol 2021;35:73–8. https://doi.org/10.1111/jdv.16686.Suche in Google Scholar PubMed
7. Fisk, WA, Lev-Tov, HA, Sivamani, RK. Botanical and phytochemical therapy of acne: a systematic review. Phytother Res 2014;28:1137–52. https://doi.org/10.1002/ptr.5125.Suche in Google Scholar PubMed
8. Lambrechts, IA, Canha, MN, Lall, N. Exploiting medicinal plants as possible treatments for acne vulgaris. In: Lall, N, editor. Medicinal Plants for Holistic Health and Well-Being. Academic Press; 2018:117–43 pp. Chapter 4.10.1016/B978-0-12-812475-8.00004-4Suche in Google Scholar
9. Nasri, H, Bahmani, M, Shahinfard, N, Moradi Nafchi, A, Saberianpour, S, Rafieian Kopaei, M. Medicinal plants for the treatment of acne vulgaris: a review of recent evidences. Jundishapur J Microbiol 2015;8:e25580. https://doi.org/10.5812/jjm.25580.Suche in Google Scholar PubMed PubMed Central
10. Proença, AC, Luís, Â, Duarte, AP. The role of herbal medicine in the treatment of acne vulgaris: a systematic review of clinical trials. Evid base Compl Alternative Med 2022;2022:2011945. https://doi.org/10.1155/2022/2011945.Suche in Google Scholar PubMed PubMed Central
11. Maneenoon, K, Khuniad, C, Teanuan, Y, Saedan, N, Prom-In, S, Rukleng, N, et al.. Ethnomedicinal plants used by traditional healers in Phatthalung Province, Peninsular Thailand. J Ethnobiol Ethnomed 2015;11:1–20. https://doi.org/10.1186/s13002-015-0031-5.Suche in Google Scholar PubMed PubMed Central
12. Obolskiy, D, Pischel, I, Siriwatanametanon, N, Heinrich, M. Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 2009;23:1047–65. https://doi.org/10.1002/ptr.2730.Suche in Google Scholar PubMed
13. Khumsupan, P, Gritsanapan, W. Anti-acne activity of Garcinia mangostana L.: a review. Plant Science Today 2014;1:147–50. https://doi.org/10.14719/pst.2014.1.3.39.Suche in Google Scholar
14. Krisdaphong, T, Jedsadapaisid, S. Antimicrobial activity of Garcinia mangostana extract for anti-acne therapy. In: International Federation of Societies of Cosmetic Chemists (IFSCC) Magazine 2012;1:9–12 pp.Suche in Google Scholar
15. Lueangarun, S, Sriviriyakul, K, Tempark, T, Managit, C, Sithisarn, P. Clinical efficacy of 0.5% topical mangosteen extract in nanoparticle loaded gel in treatment of mild‐to‐moderate acne vulgaris: a 12‐week, split‐face, double‐blinded, randomized, controlled trial. J Cosmet Dermatol 2019;18:1395–403. https://doi.org/10.1111/jocd.12856.Suche in Google Scholar PubMed
16. Pan-In, P, Wongsomboon, A, Kokpol, C, Chaichanawongsaroj, N, Wanichwecharungruang, S. Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci 2015;129:226–32. https://doi.org/10.1016/j.jphs.2015.11.005.Suche in Google Scholar PubMed
17. Pothitirat, W, Chomnawang, MT, Gritsanapan, W. Anti-acne-inducing bacterial activity of mangosteen fruit rind extracts. Med Princ Pract 2010;19:281–6. https://doi.org/10.1159/000312714.Suche in Google Scholar PubMed
18. Sukatta, U, Rugthaworn, P, Pitpiangchan, P, Dilokkunanant, U. Development of mangosteen anti-acne gel. Agric Nat Resour 2008;42:163–8.Suche in Google Scholar
19. Xu, N, Deng, W, He, G, Gan, X, Gao, S, Chen, Y, et al.. Alpha-and gamma-mangostins exhibit anti-acne activities via multiple mechanisms. Immunopharmacol Immunotoxicol 2018;40:415–22. https://doi.org/10.1080/08923973.2018.1519831.Suche in Google Scholar PubMed
20. Abdalla, M, Mohapatra, RK, Sarangi, AK, Mohapatra, PK, Ali Eltayb, W, Alam, M, et al.. In silico studies on phytochemicals to combat the emerging COVID-19 infection. J Saudi Chem Soc 2021;25:101367. https://doi.org/10.1016/j.jscs.2021.101367.Suche in Google Scholar
21. Ali, MT, Blicharska, N, Shilpi, JA, Seidel, V. Investigation of the anti-TB potential of selected propolis constituents using a molecular docking approach. Sci Rep 2018;8:12238. https://doi.org/10.1038/s41598-018-30209-y.Suche in Google Scholar PubMed PubMed Central
22. Ben Ahmed, Z, Hefied, F, Mahammed, TH, Seidel, V, Yousfi, M. Identification of potential anti‐Alzheimer agents from Pistacia atlantica Desf. galls using UPLC fingerprinting, chemometrics, and molecular docking analyses. J Food Process Preserv 2022;46:e16916. https://doi.org/10.1111/jfpp.16916.Suche in Google Scholar
23. Qasaymeh, RM, Rotondo, D, Oosthuizen, CB, Lall, N, Seidel, V. Predictive binding affinity of plant-derived natural products towards the protein kinase G enzyme of Mycobacterium tuberculosis (MtPknG). Plants 2019;8:477. https://doi.org/10.3390/plants8110477.Suche in Google Scholar PubMed PubMed Central
24. Shilpi, JA, Ali, MT, Saha, S, Hasan, S, Gray, AI, Seidel, V. Molecular docking studies on InhA, MabA and PanK enzymes from Mycobacterium tuberculosis of ellagic acid derivatives from Ludwigia adscendens and Trewia nudiflora. Silico Pharmacol 2015;3:10. https://doi.org/10.1186/s40203-015-0014-1.Suche in Google Scholar PubMed PubMed Central
25. Shirlaw, O, Billah, Z, Attar, B, Hughes, L, Qasaymeh, RM, Seidel, V, et al.. Antibiofilm activity of heather and manuka honeys and antivirulence potential of some of their constituents on the DsbA1 enzyme of Pseudomonas aeruginosa. Antibiotics 2020;9:911. https://doi.org/10.3390/antibiotics9120911.Suche in Google Scholar PubMed PubMed Central
26. Siraj, MA, Howlader, MSI, Rahaman, MS, Shilpi, JA, Seidel, V. Antinociceptive and sedative activity of Vernonia patula and predictive interactions of its phenolic compounds with the cannabinoid type 1 receptor. Phytother Res 2020;35:1069–79. https://doi.org/10.1002/ptr.6876.Suche in Google Scholar PubMed
27. Siraj, MA, Rahman, MS, Tan, GT, Seidel, V. Molecular docking and molecular dynamics simulation studies of triterpenes from Vernonia patula with the cannabinoid type 1 receptor. Int J Mol Sci 2021;22:3595. https://doi.org/10.3390/ijms22073595.Suche in Google Scholar PubMed PubMed Central
28. Cheon, D, Kim, J, Jeon, D, Shin, H-C, Kim, Y. Target proteins of phloretin for its anti-inflammatory and antibacterial activities against Propionibacterium acnes-induced skin infection. Molecules 2019a;24:1319. https://doi.org/10.3390/molecules24071319.Suche in Google Scholar PubMed PubMed Central
29. Cheon, D, Lee, WC, Lee, Y, Lee, JY, Kim, Y. Structural basis of branched-chain fatty acid synthesis by Propionibacterium acnes β-ketoacyl acyl Carrier protein synthase. Biochem Biophys Res Commun 2019b;509:322–8. https://doi.org/10.1016/j.bbrc.2018.12.134.Suche in Google Scholar PubMed
30. Reichenbach, T, Kalyani, D, Gandini, R, Svartström, O, Aspeborg, H, Divne, C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1, 4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018;13:e0204703. https://doi.org/10.1371/journal.pone.0204703.Suche in Google Scholar PubMed PubMed Central
31. Abdallah, HM, El-Bassossy, HM, Mohamed, GA, El-Halawany, AM, Alshali, KZ, Banjar, ZM. Mangostanaxanthones III and IV: advanced glycation end-product inhibitors from the pericarp of Garcinia mangostana. J Nat Med 2017;71:216–26. https://doi.org/10.1007/s11418-016-1051-8.Suche in Google Scholar PubMed
32. Al-Massarani, SM, El Gamal, AA, Al-Musayeib, NM, Mothana, RA, Basudan, OA, Al-Rehaily, AJ, et al.. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative. Molecules 2013;18:10599–608. https://doi.org/10.3390/molecules180910599.Suche in Google Scholar PubMed PubMed Central
33. Asai, F, Tosa, H, Tanaka, T, Iinuma, M. A xanthone from pericarps of Garcinia mangostana. Phytochemistry 1995;39:943–4. https://doi.org/10.1016/0031-9422(95)00042-6.Suche in Google Scholar
34. Balasubramanian, K, Rajagopalan, K. Novel xanthones from Garcinia mangostana, structures of BR-xanthone-A and BR-xanthone-B. Phytochemistry 1988;27:1552–4. https://doi.org/10.1016/0031-9422(88)80242-5.Suche in Google Scholar
35. Chae, HS, Kim, EY, Han, L, Kim, NR, Lam, B, Paik, JH, et al.. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L.(Guttiferae). Eur J Lipid Sci Technol 2016;118:1416–21. https://doi.org/10.1002/ejlt.201500516.Suche in Google Scholar
36. Chairungsrilerd, N, Takeuchi, K, Ohizumi, Y, Nozoe, S, Ohta, T. Mangostanol, a prenyl xanthone from Garcinia mangostana. Phytochemistry 1996;43:1099–102. https://doi.org/10.1016/s0031-9422(96)00410-4.Suche in Google Scholar
37. Chin, Y-W, Jung, H-A, Chai, H, Keller, WJ, Kinghorn, AD. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 2008;69:754–8. https://doi.org/10.1016/j.phytochem.2007.09.023.Suche in Google Scholar PubMed
38. Du, CT, Francis, FJ. Anthocyanins of mangosteen, Garcinia mangostana. J Food Sci 1977;42:1667–8. https://doi.org/10.1111/j.1365-2621.1977.tb08452.x.Suche in Google Scholar
39. Fu, M, Qiu, SX, Xu, Y, Wu, J, Chen, Y, Yu, Y, et al.. A new xanthone from the pericarp of Garcinia mangostana. Nat Prod Commun 2013;8:1934578X1300801219. https://doi.org/10.1177/1934578x1300801219.Suche in Google Scholar
40. Gopalakrishnan, G, Balaganesan, B. Two novel xanthones from Garcinia mangostana. Fitoterapia 2000;71:607–9. https://doi.org/10.1016/s0367-326x(00)00199-4.Suche in Google Scholar PubMed
41. Gopalakrishnan, G, Banumathi, B, Suresh, G. Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J Nat Prod 1997;60:519–24. https://doi.org/10.1021/np970165u.Suche in Google Scholar PubMed
42. Huang, Y-L, Chen, C-C, Chen, Y-J, Huang, R-L, Shieh, B-J. Three xanthones and a benzophenone from Garcinia mangostana. J Nat Prod 2001;64:903–6. https://doi.org/10.1021/np000583q.Suche in Google Scholar PubMed
43. Ibrahim, S, Abdallah, H, El-Halawany, A, Radwan, M, Shehata, I, Al-Harshany, E, et al.. Garcixanthones B and C, new xanthones from the pericarps of Garcinia mangostana and their cytotoxic activity. Phytochem Lett 2018;25:12–16. https://doi.org/10.1016/j.phytol.2018.03.009.Suche in Google Scholar
44. Ibrahim, S, Abdallah, H, El-Halawany, A, Nafady, A, Mohamed, G. Mangostanaxanthone VIII, a new xanthone from Garcinia mangostana and its cytotoxic activity. Nat Prod Res 2019a;33:258–65. https://doi.org/10.1080/14786419.2018.1446012.Suche in Google Scholar PubMed
45. Ibrahim, S, Mohamed, G, Elfaky, M, Al Haidari, R, Zayed, M, El-Kholy, A, et al.. Garcixanthone A, a new cytotoxic xanthone from the pericarps of Garcinia mangostana. J Asian Nat Prod Res 2019b;21:291–7. https://doi.org/10.1080/10286020.2017.1423058.Suche in Google Scholar PubMed
46. Ibrahim, S, Mohamed, G, Khayat, M, Ahmed, S, Abo‐Haded, H. Garcixanthone D, a new xanthone, and other xanthone derivatives from Garcinia mangostana pericarps: their α‐amylase inhibitory potential and molecular docking studies. Starch Staerke 2019c;71:1800354. https://doi.org/10.1002/star.201800354.Suche in Google Scholar
47. Ibrahim, S, Mohamed, G, Khayat, M, Ahmed, S, Abo‐Haded, H. α‐Amylase inhibition of xanthones from Garcinia mangostana pericarps and their possible use for the treatment of diabetes with molecular docking studies. J Food Biochem 2019d;43:e12844. https://doi.org/10.1111/jfbc.12844.Suche in Google Scholar PubMed
48. Ibrahim, S, Mohamed, G, Khayat, M, Ahmed, S, Abo-Haded, H, Alshali, K. Mangostanaxanthone VIIII, a new xanthone from Garcinia mangostana pericarps, alpha-amylase inhibitory activity, and molecular docking studies. Br J Pharmacogn 2019e;29:206–12. https://doi.org/10.1016/j.bjp.2019.02.005.Suche in Google Scholar
49. Iinuma, M, Tosa, H, Tanaka, T, Asai, F, Kobayashl, Y, Shimano, R, et al.. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J Pharm Pharmacol 1996a;48:861–5. https://doi.org/10.1111/j.2042-7158.1996.tb03988.x.Suche in Google Scholar PubMed
50. Jiang, HZ, Quan, XF, Tian, WX, Hu, JM, Wang, PC, Huang, SZ, et al.. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg Med Chem Lett 2010;20:6045–7. https://doi.org/10.1016/j.bmcl.2010.08.061.Suche in Google Scholar PubMed
51. Jung, H-A, Su, B-N, Keller, WJ, Mehta, RG, Kinghorn, AD. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 2006;54:2077–82. https://doi.org/10.1021/jf052649z.Suche in Google Scholar PubMed
52. Li, P, Yang, Z, Tang, B, Zhang, Q, Chen, Z, Zhang, J, et al.. Identification of xanthones from the mangosteen pericarp that inhibit the growth of Ralstonia solanacearum. ACS Omega 2019;5:334–43. https://doi.org/10.1021/acsomega.9b02746.Suche in Google Scholar PubMed PubMed Central
53. Liu, Q, Li, D, Wang, A, Dong, Z, Yin, S, Zhang, Q, et al.. Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry 2016;131:115–23. https://doi.org/10.1016/j.phytochem.2016.08.007.Suche in Google Scholar PubMed
54. Mahabusarakam, W, Wiriyachitra, P, Taylor, WC. Chemical constituents of Garcinia mangostana. J Nat Prod 1987;50:474–8. https://doi.org/10.1021/np50051a021.Suche in Google Scholar
55. Manogna Reddy, D, JainMatsumoto, K, Akao, Y, Kobayashi, E, Ohguchi, K, Ito, T, et al.. Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 2003;66:1124–7. https://doi.org/10.1021/np020546u.Suche in Google Scholar PubMed
56. Mohamed, G, Ibrahim, S, Shaaban, M, Ross, S. Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Fitoterapia 2014;98:215–21. https://doi.org/10.1016/j.fitote.2014.08.014.Suche in Google Scholar PubMed
57. Mohamed, G, Al-Abd, A, El-Halawany, A, Abdallah, H, Ibrahim, S. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J Ethnopharmacol 2017;198:302–12. https://doi.org/10.1016/j.jep.2017.01.030.Suche in Google Scholar PubMed
58. Sen, A, Sarkar, K, Mazumder, P, Banerji, N, Uusvuori, R, Hase, TA. A xanthone from Garcinia mangostana. Phytochemistry 1980;19:2223–5. https://doi.org/10.1016/s0031-9422(00)82235-9.Suche in Google Scholar
59. Sen, A, Sarkar, K, Mazumder, P, Banerji, N, Uusvuori, R, Hase, T. The structures of garcinones A, B and C: three new xanthones from Garcinia mangostana. Phytochemistry 1982;21:1747–50. https://doi.org/10.1016/0031-9422(82)85052-8.Suche in Google Scholar
60. Suksamrarn, S, Komutiban, O, Ratananukul, P, Chimnoi, N, Lartpornmatulee, N, Suksamrarn, A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull 2006;54:301–5. https://doi.org/10.1248/cpb.54.301.Suche in Google Scholar PubMed
61. Suksamrarn, S, Suwannapoch, N, Phakhodee, W, Thanuhiranlert, J, Ratananukul, P, Chimnoi, N, et al.. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 2003;51:857–9. https://doi.org/10.1248/cpb.51.857.Suche in Google Scholar PubMed
62. Suksamrarn, S, Suwannapoch, N, Ratananukul, P, Aroonlerk, N, Suksamrarn, A. Xanthones from the green fruit hulls of Garcinia mangostana. J Nat Prod 2002;65:761–3. https://doi.org/10.1021/np010566g.Suche in Google Scholar PubMed
63. Tran, TH, Le Huyen, T, Tran, TM, Nguyen, TA, Pham, TB, Nguyen Tien, D. A new megastigmane sulphoglycoside and polyphenolic constituents from pericarps of Garcinia mangostana. Nat Prod Res 2016;30:1598–604. https://doi.org/10.1080/14786419.2015.1126261.Suche in Google Scholar PubMed
64. Tran, TH, Le, HT, Nguyen, HM, Tran, TH, Do Thi, T, Nguyen, XC, et al.. Garcinoxanthones SV, new xanthone derivatives from the pericarps of Garcinia mangostana together with their cytotoxic and antioxidant activities. Fitoterapia 2021;151:104880. https://doi.org/10.1016/j.fitote.2021.104880.Suche in Google Scholar PubMed
65. Wang, S, Li, Q, Jing, M, Alba, E, Yang, X, Sabaté, R, et al.. Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s disease. Neurochem Res 2016;41:1806–17. https://doi.org/10.1007/s11064-016-1896-y.Suche in Google Scholar PubMed
66. Xu, T, Deng, Y, Zhao, S, Shao, Z. A new xanthone from the pericarp of Garcinia mangostana. J Chem Res 2016;40:10–11. https://doi.org/10.3184/174751916x14495703232667.Suche in Google Scholar
67. Xu, Z, Huang, L, Chen, X-H, Zhu, X-F, Qian, X-J, Feng, G-K, et al.. Cytotoxic prenylated xanthones from the pericarps of Garcinia mangostana. Molecules 2014;19:1820–7. https://doi.org/10.3390/molecules19021820.Suche in Google Scholar PubMed PubMed Central
68. Yang, L, Zhang, D, Li, J-B, Zhang, X, Zhou, N, Zhang, W-Y, et al.. Prenylated xanthones with α-glucosidase and α-amylase inhibitory effects from the pericarp of Garcinia mangostana. J Asian Nat Prod Res 2022;24:624–33. https://doi.org/10.1080/10286020.2021.1967328.Suche in Google Scholar PubMed
69. Yang, R, Li, P, Li, N, Zhang, Q, Bai, X, Wang, L, et al.. Xanthones from the pericarp of Garcinia mangostana. Molecules 2017;22:683. https://doi.org/10.3390/molecules22050683.Suche in Google Scholar PubMed PubMed Central
70. Yoshimura, M, Ninomiya, K, Tagashira, Y, Maejima, K, Yoshida, T, Amakura, Y. Polyphenolic constituents of the pericarp of mangosteen (Garcinia mangostana L.). J Agric Food Chem 2015;63:7670–4. https://doi.org/10.1021/acs.jafc.5b01771.Suche in Google Scholar PubMed
71. Yu, L, Zhao, M, Yang, B, Zhao, Q, Jiang, Y. Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem 2007;104:176–81. https://doi.org/10.1016/j.foodchem.2006.11.018.Suche in Google Scholar
72. Zarena, A, Sankar, KU. Isolation and identification of pelargonidin 3-glucoside in mangosteen pericarp. Food Chem 2012;130:665–70. https://doi.org/10.1016/j.foodchem.2011.07.106.Suche in Google Scholar
73. Zhang, Y, Song, Z, Hao, J, Qiu, S, Xu, Z. Two new prenylated xanthones and a new prenylated tetrahydroxanthone from the pericarp of Garcinia mangostana. Fitoterapia 2010;81:595–9. https://doi.org/10.1016/j.fitote.2010.02.002.Suche in Google Scholar PubMed
74. Zhao, Y, Liu, J-P, Lu, D, Li, P-Y, Zhang, L-X. A new antioxidant xanthone from the pericarp of Garcinia mangostana Linn. Nat Prod Res 2010;24:1664–70. https://doi.org/10.1080/14786419.2010.499539.Suche in Google Scholar PubMed
75. Zhao, Y, Liu, J-P, Lu, D, Li, P-Y, Zhang, L-X. Two new xanthones from the pericarp of Garcinia mangostana. Nat Prod Res 2012;26:61–5. https://doi.org/10.1080/14786419.2010.534094.Suche in Google Scholar PubMed
76. Zhou, X, He, L, Wu, X, Zhong, Y, Zhang, J, Wang, Y, et al.. Two new xanthones from the pericarp of Garcinia mangostana. Nat Prod Res 2015;29:19–23. https://doi.org/10.1080/14786419.2014.927873.Suche in Google Scholar PubMed
77. Zhou, X, Huang, R, Hao, J, Huang, H, Fu, M, Xu, Z, et al.. Two new prenylated xanthones from the pericarp of Garcinia mangostana (Mangosteen). Helv Chim Acta 2011;94:2092–8. https://doi.org/10.1002/hlca.201100157.Suche in Google Scholar
78. Baek, S, Kang, NJ, Popowicz, GM, Arciniega, M, Jung, SK, Byun, S, et al.. Structural and functional analysis of the natural JNK1 inhibitor quercetagetin. J Mol Biol 2013;425:411–23. https://doi.org/10.1016/j.jmb.2012.10.019.Suche in Google Scholar PubMed PubMed Central
79. Jendele, L, Krivak, R, Skoda, P, Novotny, M, Hoksza, D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res 2019;47:W345–9. https://doi.org/10.1093/nar/gkz424.Suche in Google Scholar PubMed PubMed Central
80. Nissink, JWM. Simple size-independent measure of ligand efficiency. J Chem Inf Model 2009;49:1617–22. https://doi.org/10.1021/ci900094m.Suche in Google Scholar PubMed
81. Ferreira de Freitas, R, Schapira, M. A systematic analysis of atomic protein–ligand interactions in the PDB. Med Chem Commun 2017;8:1970–81. https://doi.org/10.1039/c7md00381a.Suche in Google Scholar PubMed PubMed Central
82. Lemkul, JA. From proteins to perturbed Hamiltonians: a suite of tutorials for the GROMACS-2018 molecular simulation package [article v1. 0]. Living J Comput Mol Sci 2018;1:33011. https://doi.org/10.33011/livecoms.1.1.5068.Suche in Google Scholar
83. Zoete, V, Cuendet, MA, Grosdidier, A, Michielin, O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 2011;32:2359–68. https://doi.org/10.1002/jcc.21816.Suche in Google Scholar PubMed
84. Platsidaki, E, Dessinioti, C. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne. F1000Research 2018;7:F1000. Faculty Rev-1953. https://doi.org/10.12688/f1000research.15659.1.Suche in Google Scholar PubMed PubMed Central
85. Tanghetti, EA. The role of inflammation in the pathology of acne. J Clin Aesthetic Dermatol 2013;6:27–35.Suche in Google Scholar
86. Li, WH, Zhang, L, Lyte, P, Rodriguez, K, Cavender, D, Southall, MD. p38 MAP kinase inhibition reduces Propionibacterium acnes-induced inflammation in vitro. Dermatol Ther 2015;5:53–66. https://doi.org/10.1007/s13555-015-0072-7.Suche in Google Scholar PubMed PubMed Central
87. Graczyk, PP. JNK inhibitors as anti-inflammatory and neuroprotective agents. Future Med Chem 2013;5:539–51. https://doi.org/10.4155/fmc.13.34.Suche in Google Scholar PubMed
88. Seledtsov, VI, Malashchenko, VV, Meniailo, ME, Atochin, DN, Seledtsova, GV, Schepetkin, IA. Inhibitory effect of IQ-1S, a selective c-Jun N-terminal kinase (JNK) inhibitor, on phenotypical and cytokine-producing characteristics in human macrophages and T-cells. Eur J Pharmacol 2020;878:173116. https://doi.org/10.1016/j.ejphar.2020.173116.Suche in Google Scholar PubMed
89. Nofiani, R, Philmus, B, Nindita, Y, Mahmud, T. 3-ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. Med Chem Commun 2019;10:1517–30. https://doi.org/10.1039/c9md00162j.Suche in Google Scholar PubMed PubMed Central
90. Adem, Ş, Eyupoglu, V, Sarfraz, I, Rasul, A, Zahoor, AF, Ali, M, et al.. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine 2021;85:153310. https://doi.org/10.1016/j.phymed.2020.153310.Suche in Google Scholar PubMed PubMed Central
91. Fatriansyah, JF, Boanerges, AG, Kurnianto, SR, Pradana, AF, Fadilah, et al.. Molecular dynamics simulation of ligands from Anredera cordifolia (binahong) to the main Protease (Mpro) of SARS-CoV-2. J Trop Med 2022;2022:1178228. https://doi.org/10.1155/2022/1178228.Suche in Google Scholar PubMed PubMed Central
92. Kushwaha, PP, Singh, AK, Bansal, T, Yadav, A, Prajapati, KS, Shuaib, M, et al.. Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Front Cell Infect Microbiol 2021;11:730288. https://doi.org/10.3389/fcimb.2021.730288.Suche in Google Scholar PubMed PubMed Central
93. Badieyan, S, Bevan, DR, Zhang, C. Study and design of stability in GH5 cellulases. Biotechnol Bioeng 2012;109:31–44. https://doi.org/10.1002/bit.23280.Suche in Google Scholar PubMed
94. Martínez, L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One 2015;10:e0119264. https://doi.org/10.1371/journal.pone.0119264.Suche in Google Scholar PubMed PubMed Central
95. Purmonen, M, Valjakka, J, Takkinen, K, Laitinen, T, Rouvinen, J. Molecular dynamics studies on the thermostability of family II xylanases. Protein Eng Des Sel 2007;20:551–9. https://doi.org/10.1093/protein/gzm056.Suche in Google Scholar PubMed
96. Ahamad, S, Gupta, D, Kumar, V. Targeting SARS-CoV-2 nucleocapsid oligomerization: insights from molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2022;40:2430–43. https://doi.org/10.1080/07391102.2020.1839563.Suche in Google Scholar PubMed PubMed Central
97. Vijayabaskar, MS, Vishveshwara, S. Interaction energy based protein structure networks. Biophys J 2010;99:3704–15. https://doi.org/10.1016/j.bpj.2010.08.079.Suche in Google Scholar PubMed PubMed Central
98. Waidyasooriya, HM, Hariyama, M, Kasahara, K. An FPGA accelerator for molecular dynamics simulation using OpenCL. Int J Netw Distrib Comput 2017;5:52–61. https://doi.org/10.2991/ijndc.2017.5.1.6.Suche in Google Scholar
99. Hadda, TB, Fergoug, T, Warad, I, Masand, V, Sheikh, J. POM as a quick bioinformatic platform to select flavonoids and their metabolites as potential and efficient HIV-1 integrase inhibitors. Res Chem Intermed 2013;39:1227–44. https://doi.org/10.1007/s11164-012-0679-6.Suche in Google Scholar
100. Hadda, TB, Rastija, V, AlMalki, F, Titi, A, Touzani, R, Mabkhot, YN, et al.. Petra/osiris/molinspiration and molecular docking analyses of 3-hydroxy-indolin-2-one derivatives as potential antiviral agents. Curr Comput Aided Drug Des 2021;17:123–33. https://doi.org/10.2174/1573409916666191226110029.Suche in Google Scholar PubMed
101. Jarrahpour, A, Fathi, J, Mimouni, M, Hadda, BT, Sheikh, J, Chohan, Z, et al.. Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med Chem Res 2012;21:1984–90. https://doi.org/10.1007/s00044-011-9723-0.Suche in Google Scholar
102. Tariq, M, Sirajuddin, M, Ali, S, Khalid, N, Tahir, MN, Khan, H, et al.. Pharmacological investigations and petra/osiris/molinspiration (POM) analyses of newly synthesized potentially bioactive organotin (IV) carboxylates. J Photochem Photobiol B Biol 2016;158:174–83. https://doi.org/10.1016/j.jphotobiol.2016.02.028.Suche in Google Scholar PubMed
103. Abdelhady, MIS, Kamal, AM, Barghash, MF. POM analyses, immunomodulatory, cytotoxic activities and polyphenolic constituents of Callistemon viridiflorus fruits. Bull Fac Pharm Cairo Univ 2018;56:175–8. https://doi.org/10.1016/j.bfopcu.2018.06.001.Suche in Google Scholar
104. Auranwiwat, C, Trisuwan, K, Saiai, A, Pyne, SG, Ritthiwigrom, T. Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa. Fitoterapia 2014;98:179–83. https://doi.org/10.1016/j.fitote.2014.08.003.Suche in Google Scholar PubMed
105. Iinuma, M, Tosa, H, Tanaka, T, Kanamaru, S, Asai, F, Kobayashi, Y, et al.. Antibacterial activity of some Garcinia benzophenone derivatives against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 1996b;19:311–14. https://doi.org/10.1248/bpb.19.311.Suche in Google Scholar PubMed
106. Koh, JJ, Qiu, S, Zou, H, Lakshminarayanan, R, Li, J, Zhou, X, et al.. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta Biomembr 2013;1828:834–44. https://doi.org/10.1016/j.bbamem.2012.09.004.Suche in Google Scholar PubMed
107. Asasutjarit, R, Meesomboon, T, Adulheem, P, Kittiwisut, S, Sookdee, P, Samosornsuk, W, et al.. Physicochemical properties of alpha-mangostin loaded nanoemulsions prepared by ultrasonication technique. Heliyon 2019;5:e02465. https://doi.org/10.1016/j.heliyon.2019.e02465.Suche in Google Scholar PubMed PubMed Central
108. Lipinski, CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235–49. https://doi.org/10.1016/s1056-8719(00)00107-6.Suche in Google Scholar PubMed
109. Lipinski, CA, Lombardo, F, Dominy, BW, Feeney, PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26. https://doi.org/10.1016/s0169-409x(96)00423-1.Suche in Google Scholar
110. Palm, K, Luthman, K, Unge, A-L, Strandlund, G, Artursson, P. Correlation of drug absorption with molecular surface properties. J Pharmaceut Sci 1996;85:32–9. https://doi.org/10.1021/js950285r.Suche in Google Scholar PubMed
111. Palm, K, Stenberg, P, Luthman, K, Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharmaceut Res 1997;14:568–71. https://doi.org/10.1023/a:1012188625088.10.1023/A:1012188625088Suche in Google Scholar PubMed
112. Van de Waterbeemd, H. Silico models to predict oral absorption. In: Taylor, JB, Triggle, DJ, editors. Comprehensive Medicinal Chemistry II, Volume 5-ADME-Tox approaches. Oxford: Elsevier; 2007:669–97 pp. Chapter 5.28.10.1016/B0-08-045044-X/00145-0Suche in Google Scholar
113. Kostal, J. Computational chemistry in predictive toxicology: status quo et quo vadis? In: Fishbein, JC, Heilman, JM, editors. Advances in Molecular Toxicology, vol 10. Amsterdam, The Netherlands: Elsevier; 2016:139–86 pp.10.1016/B978-0-12-804700-2.00004-0Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znc-2023-0118).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- In silico studies on the anti-acne potential of Garcinia mangostana xanthones and benzophenones
- Novel 4-nitroimidazole analogues: synthesis, in vitro biological evaluation, in silico studies, and molecular dynamics simulation
- Dynamics of alkaloid accumulation in Narcissus cv. Hawera: a source of Sceletium-type alkaloids
- Pyrane-based cembranoid and 2-dehydro-4-peroxy-sarcophine: two new diterpenes from Sarcophyton glaucum
- Rapid Communication
- Isolation, structural elucidation, and biological activity of a novel isocoumarin from the dark septate endophytic fungus Phialocephala fortinii
Artikel in diesem Heft
- Frontmatter
- Research Articles
- In silico studies on the anti-acne potential of Garcinia mangostana xanthones and benzophenones
- Novel 4-nitroimidazole analogues: synthesis, in vitro biological evaluation, in silico studies, and molecular dynamics simulation
- Dynamics of alkaloid accumulation in Narcissus cv. Hawera: a source of Sceletium-type alkaloids
- Pyrane-based cembranoid and 2-dehydro-4-peroxy-sarcophine: two new diterpenes from Sarcophyton glaucum
- Rapid Communication
- Isolation, structural elucidation, and biological activity of a novel isocoumarin from the dark septate endophytic fungus Phialocephala fortinii