Crotofoligandrin, a new endoperoxide crotofolane-type diterpenoid from the twigs of Croton oligandrus Pierre ex. Hutch (Euphorbiaceae)
-
Vanneck Bedel Tatsinda Tsapi
, Angelbert Fusi Awantu
, Jean Jules Kezetas Bankeu
, Pépin Nkeng-Efouet-Alango
Abstract
Crotofoligandrin (1), a new endoperoxide crotofolane-type diterpenoid was isolated from the dichloromethane/methanol (1:1) extract of the twigs of Croton oligandrus Pierre Ex Hutch along with thirteen known secondary metabolites including 1-nonacosanol (2), lupenone (3), friedelin (4), β-sitosterol (5), taraxerol (6), (−)-hardwickiic acid (7), apigenin (8), acetyl aleuritolic acid (9), betulinic acid (10), fokihodgin C 3-acetate (11), D-mannitol (12), scopoletin (13) and quercetin (14). The structures of the isolated compounds were determined based on their spectroscopic data. The crude extract and the isolated compounds were assessed in vitro for their antioxidant, lipoxygenase, butyrylcholinesterase (BChE), urease and glucosidase inhibitory potentials. Compounds 1–3, and 10 displayed activities on all the performed bioassays. All the tested samples showed strong to significant antioxidant activity with compound 1 being the most potent (IC50 39.4 μM).
Funding source: Academy of Sciences for the Developing World
Award Identifier / Grant number: 3240293181
Funding source: Deutscher Akademischer Austauschdienst
Award Identifier / Grant number: 57316173
Acknowledgments
The authors are grateful to Dr. Tacham Walter Ndam, Botanist in the Department of Biological Sciences, Faculty of Science, at The University of Bamenda for the plant collection. The authors are also thankful to all the NMR and MS technicians of the ICCBS and Bielefeld for data recording.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by The World Academy of Sciences (TWAS) that financed a research stay of Y. S. F. Fongang at the International Center for Chemical and Biological Sciences (ICCBS) in Pakistan [grant FR Number: 3240293181] and the German Academic Exchange Service (DAAD) through the Yaoundé-Bielefeld School of Natural Products with Anti-parasitic and Antibacterial Activities [YaBiNaPA Project n° 57316173].
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Webster, GL. A provisional synopsis of the genus Croton (Euphorbiaceae). Int Assoc Plant Taxon 1993;42:793–823. https://doi.org/10.2307/1223265.Suche in Google Scholar
2. Berry, PE, Hipp, AL, Wurdack, K, Van, EB, Riina, R. Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensus stricto) using ITS and tmL-tmF DNA sequence data. Am J Bot 2005;92:1520–34. https://doi.org/10.3732/ajb.92.9.1520.Suche in Google Scholar PubMed
3. Souza, RKD, Silva, MAPD, Menezes, IRAD, Ribeiro, DA, Bezerra, LR, Souza, MMDA. Ethnopharmacology of medicinal plants of carrasco, northeastern Brazil. J Ethnopharmacol 2014;157:99–104. https://doi.org/10.1016/j.jep.2014.09.001.Suche in Google Scholar PubMed
4. Isyaka, SM. The chemistry of African Croton species. Doctoral thesis, Surrey, United Kindom: University of Surrey; 2020.Suche in Google Scholar
5. Ngumbau, VM, Nyange, M, Wei, N, Van Ee, BW, Berry, PE, Malombe, I, et al.. A new species of Croton (Euphorbiaceae) from the madagascan lineage discovered in Coastal Kenya. Syst Bot 2020;45:242–8. https://doi.org/10.1600/036364420x15862837791294.Suche in Google Scholar
6. Ngadjui, TB, Berhanu, MA, Keumedjio, F, Folefoc, NG, Kapche, GWF. Diterpenoids from the stem bark of Croton zambesicus. Phytochemistry 2002;60:345–9. https://doi.org/10.1016/s0031-9422(02)00034-1.Suche in Google Scholar PubMed
7. Salatino, A, Salatino, MLF, Negri, G. Traditional uses, chemistry and pharmacology of Croton species (Euphrobiaceae). J Braz Chem Soc 2007;18:11–33. https://doi.org/10.1590/s0103-50532007000100002.Suche in Google Scholar
8. Santos, HS, Furtado, E, Rodrigues, AS, Bandeira, PN, Lemos, TLG, Bezerra, AMC, et al.. Chemical composition and antioxidant activity of chemical constituents from Croton zehntneri (Euphorbiaceae). J Pharmacogn Phytochem 2017;6:1146–9.Suche in Google Scholar
9. Aubreville, A. Flore forestiere Soudano-guineenne A.O.F.: Cameroun A.E.F. Soc. D’exploration de l’impr, 2nd ed. Champagne-sur-Seine: COUESNON; 1983.Suche in Google Scholar
10. Betti, LJ, Yongo, OD, Mbomio, DO, Iponga, DM, Ngoye, A. An ethnobotanical and floristical study of medicinal plants among the Baka Pygmies in the periphery of the Ipassa-Biosphere reserve, Gabon. Eur J Med Plants 2013;3:174–205. https://doi.org/10.9734/ejmp/2013/2550.Suche in Google Scholar
11. Jiofack, T, Ayissi, I, Fokunang, C, Nguedje, N, Kemeuze, V. Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon. Afr J Pharm Pharmacol 2009;3:144–50.Suche in Google Scholar
12. Abega, DF, Kapche, DWFG, Ango, PY, Mapitse, R, Yeboah, SO, Ngadjui, BT. Chemical constituents of Croton oligandrum (Euphorbiaceae). Z Naturforsch C Biosci 2014;69c:181–5. https://doi.org/10.5560/znc.2013-0207.Suche in Google Scholar PubMed
13. Guetchueng, ST, Nahar, L, Ritchie, KJ, Ismail, FMD, Dempster, N, Evans, AR, et al.. Four new neo-clerodane diterpenes from the stem bark of Croton oligandrus. Nat Prod Res 2019;35:298–304. https://doi.org/10.1080/14786419.2019.1628745.Suche in Google Scholar PubMed
14. Guetchueng, ST, Nahar, L, Ritchie, KJ, Ismail, FMD, Evans, AR, Sarker, SD. Ent-clerodane diterpenes from the bark of Croton oligandrus Pierre Ex Hutch. and assessment of their cytotoxicity against human cancer cell lines. Molecules 2018;23:410. https://doi.org/10.3390/molecules23020410.Suche in Google Scholar PubMed PubMed Central
15. Furlan, CM, Santos, KP, Sedano-Partida, MD, Motta, L, Santos, DYAC, Salatino, MLF, et al.. Flavoinoids and antioxidant potential of nine Argentinian species of Croton (Euphorbiaceae). Braz J Bot 2015;38:693–702. https://doi.org/10.1007/s40415-014-0115-9.Suche in Google Scholar
16. Obey, JK, Ngeiywa, MM, Kiprono, P, Omar, S, Wrigth, AV, Kauhanen, J, et al.. Antimalarial activity of Croton macrostachyus extracts against Plasmodium bergheii in vivo. J Pathol 2018:2018;2393854. https://doi.org/10.1155/2018/2393854.Suche in Google Scholar PubMed PubMed Central
17. Wu, XA, Zhao, YM, Yu, NJ. A novel analgesic pyrazine derivative from the leaves of Croton tiglium L. J Asian Nat Prod Res 2007;9:437–41. https://doi.org/10.1080/10286020500384781.Suche in Google Scholar PubMed
18. Ndunda, B, Langat, MK, Wanhoji, JM, Midiwo, JO, Kerubo, LO. Alienusolin, a new 4α-deoxyphorbol ester derivative, and crotonomide C, a new glutarimide alkaloid from the Kenyan Croton alienus. Planta Med 2013;79:1762–6. https://doi.org/10.1055/s-0033-1351044.Suche in Google Scholar PubMed
19. Novello, CR, Marques, LC, Pires, ME, Kutchenco, AP, Nakamura, CV, Nocchi, S, et al.. Bioactive indole alkaloids from Croton echioides. J Braz Chem Soc 2016;27:2203–9.10.5935/0103-5053.20160112Suche in Google Scholar
20. Xu, WH, Liu, W, Liang, Q. Chemical constituents from Croton species and their biological activities. Molecules 2018;23:2333. https://doi.org/10.3390/molecules23092333.Suche in Google Scholar PubMed PubMed Central
21. Fongang, FYS, Amadou, D, Awantu, AF, KJJ, B, Kagho, KDU, Mehreen, L, et al.. Crotoligandrin, a new clerodane-type furano-diterpenoid from Croton oligandrus Pierre Ex. Hutch. Nat Prod Res 2019;35:63–71. https://doi.org/10.1080/14786419.2019.1613399.Suche in Google Scholar PubMed
22. Langat, MK, Crouch, NR, Pohjala, L, Tammela, P, Smith, P, Mulholland, DA. Ent-kauren-19-oic acid derivatives from the stem bark of Croton pseudopulchellus Pax. Phytochem Lett 2012;5:414–8. https://doi.org/10.1016/j.phytol.2012.03.002.Suche in Google Scholar
23. Langat, MK, Djuidje, EFK, Ndunda, BM, Isyaka, SM, Dolan, NS, Ettridge, GD, et al.. The phytochemical investigation of five African Croton species: Croton oligandrus, Croton megalocarpus, Croton menyharthii, Croton rivularis and Croton megalobotrys. Phytochem Lett 2020;40:148–55. https://doi.org/10.1016/j.phytol.2020.09.020.Suche in Google Scholar
24. Fongang, FYS, Awantu, AF, Bankeu, JJK, Lateef, M, Lenta, DN, Ali, MS, et al.. Oligandrin, a new Ent-pimarane type diterpenoid and other bioactive constituents from the leaves of Croton oligandrus. Chem Nat Compd 2021;57:1–7. https://doi.org/10.1007/s10600-021-03291-4.Suche in Google Scholar
25. Mulholland, DA, Langat, MK, Crouch, NR, Coley, HM, Mutambi, EM, Nuzillard, JM. Cembranoids from the stem bark of the southern African medicinal plant, Croton gratissimus (Euphorbiaceae). Phytochemistry 2010;71:1381–6. https://doi.org/10.1016/j.phytochem.2010.05.014.Suche in Google Scholar PubMed
26. Chan, WR, Prince, EC, Manchand, PS, Springer, JP, Clardy, J. The structure of crotofolin A, a new diterpene with a new skeleton. J Am Chem Soc 1975;97:4437–9. https://doi.org/10.1021/ja00848a071.Suche in Google Scholar
27. Soares, DBS, Duarte, LP, Cavalcanti, AD, Silva, FC, Braga, AD, Lopes, MTP, et al.. Psychotria viridis: chemical constituents from leaves and biological properties. An Acad Bras Cienc 2017;89:927–38. https://doi.org/10.1590/0001-3765201720160411.Suche in Google Scholar PubMed
28. Nganso, DYO, Soh, D, Ndogo, EO, Mala, OMTG, Nyasse, B. Fatty alcohols isolated from Prosopis africana and evaluation of antibacterial and antituberculosis activities. J Dis Med Plants 2018;4:128–32.10.11648/j.jdmp.20180405.12Suche in Google Scholar
29. Kaur, G, Gupta, V, Bansal, P, Kumar, S, Rawal, RK, Singhal, RG. Isolation of lupenone (18-Lupen-3-one) from Roscoea purpurea root extract. Bangladesh J Med Sci 2020;19:692–6. https://doi.org/10.3329/bjms.v19i4.46627.Suche in Google Scholar
30. Terefe, EM, Okalebo, FA, Derese, S, Langat, MK, Mas-Claret, E, Aljarba, NH, et al.. In vitro anti-HIV and cytotoxicity effects of pure compounds isolated from Croton macrostachyus Hchst. Ex Delile. BMC Comp Med Ther 2022;22:159. https://doi.org/10.1186/s12906-022-03638-6.Suche in Google Scholar PubMed PubMed Central
31. Herrera, C, Pérez, Y, Morocho, V, Armijos, C, Malagon, O, Brito, B, et al.. Preliminary phytochemical study of the Ecuadorian plant Croton elegans Kunth (Euphorbiaceae). J Chil Chem Soc 2018;63:3875–7. https://doi.org/10.4067/s0717-97072018000103875.Suche in Google Scholar
32. Chaturvedula, PSV, Prakash, I. Isolation of stigmasterol and β-sitosterol from the dichloromethane extract of Rubus suavissimus. Int Curr Pharmaceut J 2012;1:239–42. https://doi.org/10.3329/icpj.v1i9.11613.Suche in Google Scholar
33. Oladoye, SO, Ayodele, ET, Abdul-Hammed, M, Idowu, OT. Characterization and identification of taraxerol and taraxer-14-en-3-one from Jatropha tanjorensis (Ellis and Saroja) leaves. Pak J Ind Res Ser A: Phys Sci 2015;58:46–54.10.52763/PJSIR.PHYS.SCI.58.1.2015.46.50Suche in Google Scholar
34. Crentsil, JA, Yamthe, LRT, Anibea, BZ, Broni, E, Kwofie, SK, Tetteh, JKA, et al.. Leishmanicidal potential of hardwickiic acid isolated from Croton sylvaticus. Front Pharmacol 2020;11:753. https://doi.org/10.3389/fphar.2020.00753.Suche in Google Scholar PubMed PubMed Central
35. Ersöz, T, Harput, US, Saracoglu, I, Calis, I, Ogihara, Y. Phenolic compounds from Scutellaria pontica. Turk J Chem 2002;26:581–8.Suche in Google Scholar
36. Ibrahim, HA, Elgindi, MR, Ibrahim, RR, El-Hosari, DG. Antibacterial activities of triterpenoidal compounds isolated from Calothamnus quadrifidus leaves. BMC Compl Alternative Med 2019;19:1–6. https://doi.org/10.1186/s12906-019-2512-x.Suche in Google Scholar PubMed PubMed Central
37. Mehmood, R, Malik, A. New secondary metabolites from Croton spariflorus. Z Naturforsch 2011;66b:857–60.10.1515/znb-2011-0812Suche in Google Scholar
38. Shah, MR, Shamim, A, White, LS, Bertino, MF, Mesaik, MA, Soomro, S. The anti-inflammatory properties of Au-scopoletin nanoconugates. New J Chem 2014;38:5566–72. https://doi.org/10.1039/c4nj00792a.Suche in Google Scholar
39. Zhang, Y, Wang, D, Yang, L, Zhou, D, Zhang. Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PLoS One 2014;9: e105725. https://doi.org/10.1371/journal.pone.0105725.Suche in Google Scholar PubMed PubMed Central
40. Kawakami, S, Matsunami, K, Otsuka, H, Inagaki, M, Takeda, Y, Kawahata, M, et al.. Crotocarscarins I-K: crotofolane-type diterpenoids, crotocascarin γ, Isocrotofolane glucoside and phenolic glycoside from the leaves of Croton cascarilloides. Chem Pharm Bull 2015;63:1047–54. https://doi.org/10.1248/cpb.c15-00635.Suche in Google Scholar PubMed
41. Pascoe, KO. Diterpenes from Jamaican Caesalpiniaceae Euphorbiaceae. Mona, Jamaïca: PhD (Chemistry) Thesis from the University of West Indies; 1980.Suche in Google Scholar
42. Maslovskaya, LA, Savchenko, AI, Pierce, CJ, Gordon, VA, Reddel, PW, Parsons, PG, et al.. Unprecedented 1,14-seco-crotofolanes from Croton insularis: oxidative cleavage of crotofolin C by a putative Homo-Baeyer-Villiger rearrangement. Chem Eur J 2014;20:14226–30. https://doi.org/10.1002/chem.201404250.Suche in Google Scholar PubMed
43. Filho, FAS, Hunior, NS, Braz-Filho, R, Simone, CA, Silviera, ER, Lima, MAS. Crotofolane- and casbane-type diterpenes from Croton argyrophyllus. Helv Chim Acta 2013;96:1146–54. https://doi.org/10.1002/hlca.201200347.Suche in Google Scholar
44. Kipngeno, CD. Screening and characterization of some anticancer compounds from Salicaceae, Myrtaceae, Euphorbiaceae and Solanaceae families. Ph.D Thesis, Njoro, Kenya: Egerton University; 2019.Suche in Google Scholar
45. Aguilar-Guadarrama, AB, Rios, MY. Three new sesquiterpenes from Croton arboreous. J Nat Prod 2004;67:914–7. https://doi.org/10.1021/np030485f.Suche in Google Scholar PubMed
46. Dembitsky, VM. Astonishing diversity of natural peroxide as potential therapeutic agents. J Mol Genet Med 2015;9:1–18.Suche in Google Scholar
47. Kawakami, S, Tayoda, H, Harinantenaina, L, Matsunami, K, Otsuka, H, Shinzato, T, et al.. Eighth new direpenoids and two nor-diterpenoids from the stems of Croton cascarilloides. Chem Pharm Bull 2013;61:411–8. https://doi.org/10.1248/cpb.c12-01002.Suche in Google Scholar PubMed
48. Carocho, M, Ferreira, IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013;51:15–25. https://doi.org/10.1016/j.fct.2012.09.021.Suche in Google Scholar PubMed
49. Li, K, Fan, H, Yin, P, Yang, L, Xue, Q, Li, X, et al.. Structure-activity relationship of eight high content flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arab J Chem 2018;11:159–70. https://doi.org/10.1016/j.arabjc.2017.08.002.Suche in Google Scholar
50. Günther, A, Makuch, E, Nowak, A, Duchnik, W, Kucharski, L, Pelech, R, et al.. Enhancement of the antioxidant and skin permeation properties of botulin and its derivatives. Molecules 2021;26:3435. https://doi.org/10.3390/molecules26113435.Suche in Google Scholar PubMed PubMed Central
51. Ferheen, S, Ahmed, E, Afza, N, Malik, A, Shan, MR, Nawas, SA, et al.. Haloxynes A and B, antifungal and cholinesterase inhibiting piperidine alkaloids from Haloxylon salicornium. Chem Pharm Bull 2005;53:570–2. https://doi.org/10.1248/cpb.53.570.Suche in Google Scholar PubMed
52. Nawaz, H, Ahmed, E, Sharif, A, Rasool, MA, Mukhtar-Ul-Hassan, Batool, N, et al.. Isolation and spectral assignments of lipoxygenase inhibiting triterpene from Solanum surratense. Asian J Chem 2014;26:1091–4. https://doi.org/10.14233/ajchem.2014.15931.Suche in Google Scholar
53. Benrezzouk, R, Terencio, MC, Ferrandiz, ML, Feliciano, AS, Gordaliza, M, Corral, JMM, et al.. Inhibition of human Spla2 and 5-lipoxygenase activities by two neo-clerodane diterpenoids. Life Sci 1999;64:205–11. https://doi.org/10.1016/s0024-3205(99)00119-8.Suche in Google Scholar PubMed
54. Naz, F, Latif, M, Salar, U, Kham, KM, Al-Rashida, M, Ali, I, et al.. 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Biorg Chem 2020;105: 104365. https://doi.org/10.1016/j.bioorg.2020.104365.Suche in Google Scholar PubMed
55. Ali, F, Shamim, S, Lateef, M, Khan, KM, Taha, M, Salar, U, et al.. N-Aryl-3,4-dihydroisoquinoline carbothioamide analogues as potential urease inhibitors. ACS Omega 2021;6:15794–803. https://doi.org/10.1021/acsomega.1c01182.Suche in Google Scholar PubMed PubMed Central
56. Min, SLS, Liew, SY, Chear, NJY, Goh, BH, Tan, WN, Khaw, KY. Plant terpenoids as the promising source of cholinesterase inhibitors for anti-AD therapy. Biology 2022;11:307. https://doi.org/10.3390/biology11020307.Suche in Google Scholar PubMed PubMed Central
57. Fongang, FYS, Awantu, FA, Dawe, A, Bankeu, KJJ, Shaiq, AM, Lateef, M. Butyrylcholinesterase inhibitors from two Ficus species (Moraceae). J. Phytopharmacol 2017;6:220–6. https://doi.org/10.31254/phyto.2017.6404.Suche in Google Scholar
58. Nargis, J, Melati, K, Khaw, KY, Hasnah, O, Vikneswaran, M. Cholinesterasee inhibitory triterpenoids from the bark of Garcinia hombroniana. J Enzym Inhib Med Chem 2015;30:133–9.10.3109/14756366.2014.895720Suche in Google Scholar PubMed
59. Boyanov, KO, Choneva, MA, Dimov, I, Dimitrov, IV, Vlaykova, TI, Gerginska, FD, et al.. Effect of olisosaccharides on the antioxidant, lipid and inflammatory profiles of rats with streptozotocin-induced Diabetes mellitus. Z Naturforsch C Biosci 2022;77:379–86. https://doi.org/10.1515/znc-2021-0215.Suche in Google Scholar PubMed
60. Medina-Perez, G, Zaldivar-Ortega, AK, Cenobio-Galindo, A, Afanador-Barajas, LN, Vieyra-Alberto, R, Estefes-Duarte, JA, et al.. Antidiabetic activity of Cactus acid fruit extracts: simulated intestinal conditions of the inhibitory effects on α-amylase and α-glucosidase. Appl Sci 2019;9:4066. https://doi.org/10.3390/app9194066.Suche in Google Scholar
61. Sancheti, S, Sancheti, S, Seo, SY. Antidiabetic and antiacethylcholinesterase effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne fruits in streptozotocin-induced diabetic rats. Exp Toxicol Pathol 2013;65:55–60. https://doi.org/10.1016/j.etp.2011.05.010.Suche in Google Scholar PubMed
62. Tappel, AL. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hemantin compounds. Arch Biochem Biophys 1953;44:378–95. https://doi.org/10.1016/0003-9861(53)90056-3.Suche in Google Scholar PubMed
63. Ellman, GL, Courtney, K, Andres, V, Feather-stone, RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.Suche in Google Scholar PubMed
64. Weatherbum, MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 1967;39:971–4. https://doi.org/10.1021/ac60252a045.Suche in Google Scholar
65. Bongmo, VLL, Nouga, BA, Happi, MG, Tabekoueng, GB, Lateef, M, Kamdem, WAF, et al.. Phytochemical compounds of Guibourtia ehie and their antioxidant, urease and α-glucosidase inhibitory activities. Nat Resour Hum Heal 2022;2:306–12. https://doi.org/10.53365/nrfhh/145341.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znc-2022-0204).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Proximate analysis and fatty acid, mineral and soluble carbohydrate profiles of some brown macroalgae collected from Türkiye coasts
- Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus
- Crotofoligandrin, a new endoperoxide crotofolane-type diterpenoid from the twigs of Croton oligandrus Pierre ex. Hutch (Euphorbiaceae)
- Chemical composition of different plant part from Lactuca serriola L. – focus on volatile compounds and fatty acid profile
- Essential oil composition, anti-tyrosinase activity, and molecular docking studies of Knema intermedia Warb. (Myristicaceae)
- Isolation of compounds from the roots of Ambrosia artemisiifolia and their effects on human cancer cell lines
- Berberine may provide redox homeostasis during aging in rats
- The search for commercial sweet white lupin (Lupinus albus L.) adaptive to Ethiopian growing condition seems not successful: what should be done?
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Proximate analysis and fatty acid, mineral and soluble carbohydrate profiles of some brown macroalgae collected from Türkiye coasts
- Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus
- Crotofoligandrin, a new endoperoxide crotofolane-type diterpenoid from the twigs of Croton oligandrus Pierre ex. Hutch (Euphorbiaceae)
- Chemical composition of different plant part from Lactuca serriola L. – focus on volatile compounds and fatty acid profile
- Essential oil composition, anti-tyrosinase activity, and molecular docking studies of Knema intermedia Warb. (Myristicaceae)
- Isolation of compounds from the roots of Ambrosia artemisiifolia and their effects on human cancer cell lines
- Berberine may provide redox homeostasis during aging in rats
- The search for commercial sweet white lupin (Lupinus albus L.) adaptive to Ethiopian growing condition seems not successful: what should be done?