Startseite (−)-Brunneusine, a new phenolic compound with antibacterial properties in aqueous medium from the leaves of Agelanthus brunneus (Engl.) Tiegh (LORANTHACEAE)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

()-Brunneusine, a new phenolic compound with antibacterial properties in aqueous medium from the leaves of Agelanthus brunneus (Engl.) Tiegh (LORANTHACEAE)

  • Moifo Kuete Thomas Wieland , Ambassa Pantaleon , Moungang Luciane Marlyse , Ngameni Bathelemy EMAIL logo , Storr E. Thomas , Ngadjui Tchaleu Bonaventure und Stephenson G. Richard EMAIL logo
Veröffentlicht/Copyright: 28. September 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Agelanthus brunneus (Loranthaceae) is a hemiparasitic plant growing on Senna siamea (Fabaceae). The chemical investigation of its leaves and flowers led to the isolation of one new phenolic compound namely (−)-brunneusine (1), together with 13 known compounds. The crude leaves and flowers extracts (CLE and CFLE) with their ethyl acetate fractions (EAFL and EAFFL) and some isolated compounds (1–3; 8–9 and 11–14) have been tested on four bacterial species of sanitary importance isolated in an aquatic environment. All the samples except compound 3 showed antibacterial activity with MICs ranging from 0.43 to 8.88.103 µg/mL and MBCs from 0.43 to 3.55.103 µg/mL. Compounds 9 and 14 showed better activity on all bacterial species tested with MICs ranging from 0.43 to 27.77 µg/mL. Only CLE, EAFL and compounds 14, 2, 8 and 9 showed bactericidal effects on all bacterial species tested.


Corresponding authors: Ngameni Bathelemy, Department of Pharmacognosy and Pharmaceutical Chemistry, University of Yaoundé I, Yaoundé, P.O. Box 1364, Cameroon; and School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK, E-mail: ; and Stephenson G. Richard, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK, E-mail:

Funding source: UEA

Award Identifier / Grant number: CHE 21A3

Acknowledgment

B. Ngameni, S. E. Thomas and S. G. Richard acknowledge Open Lab Africa through this exchange research program. The authors are also grateful to the School of Chemistry, Faculty of Science, University of East Anglia, UK for research facilities and support with the experimental equipment and Dr. C.J. Macdonald, NMR Facility Manager, School of Chemistry for technical advice and training.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the UEA Vice Chancellor’s Global Challenges Research Fellowships Scheme; Code: CHE 21A3.

  3. Conflict of interest statement: The authors declare no conflict of interest.

Appendix

HR-ESI-MS, IR as well as 1D and 2D NMR spectra of compounds 1–3; 6–14 are available as supplementary material.

References

1. Drouet, PE. Le monde Microbien : Partie 1.  Cellule TICE de la Faculté de Médecine et de Pharmacie de Grenoble. Université Joseph Fourier – Grenoble 1;2011:58 p.Suche in Google Scholar

2. OMS | Le manque d’assainissement pour 2,4 milliards de personnes compromet les améliorations dans le domaine de la santé [Internet]; 2019 [cité 16 Janv. 2019]. Disponible sur: https://www.who.int/mediacentre/news/releases/2015/jmp-report/fr/.Suche in Google Scholar

3. OMS | Rapport 2015 sur les progrès en matière d’assainissement et d’alimentation en eau: les principaux faits [Internet]; 2019 [cité 16 Janv. 2019]. Disponible sur: https://www.who.int/water_sanitation_health/monitoring/jmp-2015-key-facts/fr/.Suche in Google Scholar

4. Ako, AA, Nkeng, GE, Takem, GEE. Water quality and occurrence of water-borne diseases in the Douala 4th District, Cameroon. Water Sci Technol 2009;59:2321.10.2166/wst.2009.268Suche in Google Scholar

5. Nnanga Nga, E, Tsala, DE, Ngene, JP, Ngoulé, C, Mpondo, EM, Loe, GE. Relation entre Pollution des Eaux de Sources, Forages et Maladies Hydriques Enregistrées au Centre Hospitalier Dominicain Saint Martin de Porres (CHDSMP) du Quartier Mvog-Betsi à Yaoundé. Health Sci Dis 2014;15:390 p.Suche in Google Scholar

6. Zaman, SB, Hussain, MA, Nye, R, Mehta, V, Mamun, KT, Hossain, NA. Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus [Internet] [cité 4 Déc. 2018]; 2017. Disponible sur: http://www.cureus.com/articles/7900-a-review-on-antibiotic-resistance-alarm-bells-are-ringing.10.7759/cureus.1403Suche in Google Scholar

7. Kuete, V. Potential of Cameroonian plants and derived products against microbial infections. Planta Med 2010;76:79–91.10.1055/s-0030-1250027Suche in Google Scholar

8. Stratégie, OMS. de l’OMS pour la Médecine Traditionnelle pour; 2002:78 p. cité 20. Mai. 2002.Suche in Google Scholar

9. Johnri, M. Tropical mistletoes. In: Weber, HC, Forstreuter, W, editors. Proceeding of the fourth international symposium on parasitic flowering plants, Marburg, Germany; 1987.Suche in Google Scholar

10. Ladoh-Yemeda, CF, Din, N, Eyango, TM. Medicinal potentials of Phragmanthera capitata (Sprengel) S Balle (Loranthaceae). Used in the City of Douala (Cameroon). Saudi J Biol Sci 2019;4:1–14.Suche in Google Scholar

11. Dibong, SD, Mony, R, Ladoh, CF, Boussim, IJ, Amougou, A. Parasitism evolution of Loranthaceae in the Ndogbong chiefdom’s orchard (Douala, Cameroon). IJPAES 2011;3:261–9.Suche in Google Scholar

12. Obatomi, DK, Bikomo, EO, Temple, VJ. Antidiabetic properties of the African mistletoe in streptozotocin induced diabetic rats. J Ethnopharmacol 1994;43:13–7.10.1016/0378-8741(94)90111-2Suche in Google Scholar

13. Dibong, SD, Engone, ONL, Din, N, Priso, RJ, Taffouo, V, Fankem, H, et al.. Les Loranthaceae: un atout pour l’essor de la pharmacopée traditionnelle au Cameroun. J Med Plants Res 2009;3:746–54.10.4314/ijbcs.v3i4.47185Suche in Google Scholar

14. Boly, R, Dessy, S, Kohnen, S, Kini, F, Lompo, M, Mouithys-Mickalad, A, et al.. Modulatory activities of Agelanthus dodoneifolius (Loranthaceae) extracts on stimulated equine neutrophils and myeloperoxidase activity. Int J Mol Med 2011;28:261–70.10.3892/ijmm.2011.695Suche in Google Scholar

15. Traore, R, Ouedraogo, S, Lompo, M, Guissou, IP. Propriétés pharmacologiques de Tapinanthus dodoneifolius DC danser (Loranthaceae), anti-asthmatique de la tradithérapie du Burkina Faso. Sciences et Techniques. Ouagadougou: Revue burkinabé de la recherche; 2004:26–7 pp.Suche in Google Scholar

16. Builders, MI, Uguru, MO, Aguiyi, C. Antiplasmodial potential of the African mistletoe: agelanthus dodoneifolius polh and Wiens. Indian J Pharmaceut Sci 2012;74:223.10.4103/0250-474X.106064Suche in Google Scholar

17. Deeni, YY, Sadiq, NM. Antimicrobial and phytochemical constituents of leaves of African mistletoe (Tapinanthus dodoneifolius (DC) danser) (Loranthaceae) an ethnomedicinal plant of Hausaland, Northern, Nigeria. J Ethnopharmacol 2002;83:235–40.10.1016/S0378-8741(02)00244-1Suche in Google Scholar

18. Ouedraogo, M, Carreyre, H, Vandebrouck, C, Bescond, J, Raymond, G, Guissou, I-P, et al.. Structure elucidation of a Dihydropyranone from Tapinanthus dodoneifolius. J Nat Prod 2007;70:2006–9.10.1021/np070355xSuche in Google Scholar PubMed

19. Lenta, BN, Ateba, JT, Chouna, JR, Aminake, MN, Nardella, F, Pradel, G, et al.. Two 2, 6-Dioxabicyclo[3.3.1]nonan-3-ones from Phragmanthera capitata (Spreng.) Balle (Loranthaceae). Helv Chim Acta 2015;98:945–52.10.1002/chin.201547208Suche in Google Scholar

20. Kamathama, S, Naresh, K, Gudipalli, P. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicol Rep 2015;2:520–9.10.1016/j.toxrep.2015.03.001Suche in Google Scholar

21. Ragasa, YC, Cornelio, K, Bauca, T, Chua, S, Shen, C-C. Chemical constituents of the leaves, stems, and fruits of Synsepalum dulcificum. Chem 2015;5:588–9.10.1007/s10600-015-1356-ySuche in Google Scholar

22. Mkounga, P, Maza, HLD, Ouahouo, BMW, Tyon, LN, Hayato, I, Hiroshi, N, et al.. New lupan-type triterpenoids. Z Naturforsch 2016;71:381–6.10.1515/znc-2015-0235Suche in Google Scholar

23. Singh, JP, Singh, AK, Singh, A, Ranjan, R. Chemical constituents of artabotrys odoratissimus (seeds). Rasayan J Chem 2009;2:156–8.Suche in Google Scholar

24. Maza, H, Mkounga, P, Fenkam, SL, Sado, SK, Hishikawa, H, Nishino, H, et al.. Triterpenoids from seeds of Tapinanthus bangwensis. Phytochem Lett 2016;19:23–9.10.1016/j.phytol.2016.11.002Suche in Google Scholar

25. Rasoanaivo, LH, Wadouachi, A, Andriamampianina, TT, Andriamalala, SG, Razafindrakoto, EJB, Raharisololalao, A, et al.. Triterpenes and steroids from the stem bark of Gambeya boiviniana. J Pharmacogn Phytochem 2014;3:68–72.Suche in Google Scholar

26. Guvenalp, LZ, Demirezer, LÖ. Flavonol glycosides from Asperula arvensis. Turk J Chem 2005;29:163–9.Suche in Google Scholar

27. Touqeer, S, Saeed, MA, Ajaib, M. A review on the phytochemistry and pharmacology of genus Tephrosia. Phytopharmacology 2013;4:598–637.Suche in Google Scholar

28. Kalegari, M, Miguel, MD, Dias, JFG, Lordello, ALL, Lima, CP, Miyazaki, CMS, et al.. Phytochemical constituents and preliminary toxicity evaluation of leaves from Rourea induta Planch. (Connaraceae). Braz J Pharm Sci 2011;47:635–42.10.1590/S1984-82502011000300023Suche in Google Scholar

29. Markham, KR, Ternai, B, Stanley, R, Geiger, H, Mabry, TJ. 13C-NMR studies of flavonoids II. Tetrahedron 1978;34:1391–7.10.1016/0040-4020(78)88336-7Suche in Google Scholar

30. Loizzo, MR, Said, A, Tundis, R, Rashed, K, Antonio, SG, Hufner, A, et al.. Inhibition of Angiotensin Converting Enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res 2007;21:32–6.10.1002/ptr.2008Suche in Google Scholar PubMed

31. Ngameni, B, Fotso, WG, Ambassa, P, Kamga, J, Dastan, A, Ngadjui, TB. Hemisynthesis and spectroscopic characterization of three new chalcone derivatives from Dorstenia barteri. Chem Nat Compd 2017;53:241–57.10.1007/s10600-017-1962-ySuche in Google Scholar

32. Clayden, J, Greeves, N, Warren, S, Wothers, P. Organic chemistry. New York: Oxford University Press; 2001:456 p.Suche in Google Scholar

33. March, J. Advanced organic chemistry, 3rd ed. New York, NY: John Wiley & Sons; 1985:125 p.Suche in Google Scholar

34. Jensen, FR, Bushweller, CH. Conformational preferences and intercoversion barriers in cyclohexene and derivative. J Am Chem Soc 1969;91:3223–5.10.1021/ja01040a022Suche in Google Scholar

35. CHU-PS. Bactériologie DCEM1. Université Paris-VI Pierre et Marie Curie, Faculté de Médecine Pitié-Salpêtrière. Service de Bactériologie; 2003:122 p.Suche in Google Scholar

36. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard-ninth edition. Wayne, PA: CLSI Document M07-A9; 2012.Suche in Google Scholar

37. Calop, J, Limat, S, Fernandez, C, Aulagner, G. Pharmacie clinique et thérapeutique, 4e éd. Paris: Elsevier Masson; 2012.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znc-2021-0143).


Received: 2021-05-18
Accepted: 2021-09-13
Published Online: 2021-09-28
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2021-0143/pdf?lang=de
Button zum nach oben scrollen