Startseite [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

[Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly

  • Jonas R. Schmid ORCID logo , Anja Wiesner ORCID logo , Patrick Voßnacker ORCID logo , Martin Jansen ORCID logo EMAIL logo und Sebastian Riedel ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The compounds [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4] were synthesized from commercially available starting materials and fully characterized by single-crystal X-ray diffraction, NMR, IR and Raman spectroscopy, as well as mass spectrometry. Both ammonium cations show potential for applications in crystal engineering due to their structure directing properties in the solid state.


Dedicated to Professor Wolfgang Bensch on the occasion of his 70th birthday.



Corresponding authors: Martin Jansen, Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany, E-mail: ; and Sebastian Riedel, Anorganische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany; E-mail:

Acknowledgment

We gratefully acknowledge the Core Facility BioSupraMol supported by the DFG. Open Access funding enabled and organized by Projekt DEAL.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. JRS performed the experiments and created the first draft of the manuscript. AW and PV performed single-crystal x-ray diffraction measurements. MJ and SR guided the project and corrected the drafts.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Desiraju, G. R. Angew. Chem. Int. Ed. 2007, 46, 8342–8356; https://doi.org/10.1002/anie.200700534.Suche in Google Scholar PubMed

2. Corpinot, M. K., Bučar, D.-K. Cryst. Growth Des. 2019, 19, 1426–1453; https://doi.org/10.1021/acs.cgd.8b00972.Suche in Google Scholar

3. Nangia, A. K., Desiraju, G. R. Angew. Chem. Int. Ed. 2019, 58, 4100–4107; https://doi.org/10.1002/anie.201811313.Suche in Google Scholar PubMed

4. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952–9967; https://doi.org/10.1021/ja403264c.Suche in Google Scholar PubMed

5. Brammer, L., Peuronen, A., Roseveare, T. M. Acta Crystallogr. 2023, C79, 204–216.10.1107/S2053229623004072Suche in Google Scholar PubMed PubMed Central

6. Schulz-Dobrick, M., Jansen, M. Inorg. Chem. 2007, 46, 4380–4382; https://doi.org/10.1021/ic700434x.Suche in Google Scholar PubMed

7. Gruber, F., Schulz-Dobrick, M., Jansen, M. Chem. Eur. J. 2010, 16, 1464–1469; https://doi.org/10.1002/chem.200902538.Suche in Google Scholar PubMed

8. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952–9967; https://doi.org/10.1021/ja403264c.Suche in Google Scholar

9. Scheiner, S. J. Chem. Phys. 2020, 153, 140901; https://doi.org/10.1063/5.0026168.Suche in Google Scholar PubMed

10. Jansen, M. Angew Chem. Int. Ed. Engl. 1987, 26, 1098–1110; https://doi.org/10.1002/anie.198710981.Suche in Google Scholar

11. Saßmannshausen, J. Dalton Trans. 2012, 41, 1919–1923; https://doi.org/10.1039/c1dt11213a.Suche in Google Scholar

12. Reger, D. L., Debreczeni, A., Horger, J. J., Smith, M. D. Cryst. Growth Des. 2011, 11, 4068–4079; https://doi.org/10.1021/cg200636k.Suche in Google Scholar

13. Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1637–1641; https://doi.org/10.1351/pac-rec-10-01-02.Suche in Google Scholar

14. Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., Beer, P. D. Chem. Rev. 2015, 115, 7118–7195; https://doi.org/10.1021/cr500674c.Suche in Google Scholar

15. Batten, S. R., Champness, N. R. Philos. Trans.: Math., Phys. Eng. Sci. 2017, 375, 4, 20160032; https://doi.org/10.1098/rsta.2016.0032.Suche in Google Scholar

16. Gruzdev, M. S., Vorobeva, V. E., Zueva, E. M., Chervonova, U. V., Petrova, M. M., Domracheva, N. E. Polyhedron 2018, 155, 415–424; https://doi.org/10.1016/j.poly.2018.08.072.Suche in Google Scholar

17. Harris, N., Shaik, S., Schröder, D., Schwarz, H. Helv. Chim. Acta 1999, 82, 1784–1797; https://doi.org/10.1002/(sici)1522-2675(19991006)82:10<1784::aid-hlca1784>3.0.co;2-m.10.1002/(SICI)1522-2675(19991006)82:10<1784::AID-HLCA1784>3.0.CO;2-MSuche in Google Scholar

18. Shirali, K., Shelton, W. A., Vekhter, I. J. Phys.: Condens. Matter 2020, 33, 035702; https://doi.org/10.1088/1361-648x/abbdbc.Suche in Google Scholar

19. Rauch, F., Fuchs, S., Friedrich, A., Sieh, D., Krummenacher, I., Braunschweig, H., Finze, M., Marder, T. B. Chem. Eur. J. 2020, 26, 12794–12808; https://doi.org/10.1002/chem.201905559.Suche in Google Scholar

20. Fuhrer, T. J., Houck, M., Iacono, S. T. ACS Omega 2021, 6, 32607–32617; https://doi.org/10.1021/acsomega.1c04175.Suche in Google Scholar

21. Bondi, A. J. Phys. Chem. 1964, 68, 441–451; https://doi.org/10.1021/j100785a001.Suche in Google Scholar

22. Alkorta, I., Rozas, I., Elguero, J. J. Am. Chem. Soc. 2002, 124, 8593–8598; https://doi.org/10.1021/ja025693t.Suche in Google Scholar PubMed

23. Reichenbächer, K., Süss, H. I., Hulliger, J. Chem. Soc. Rev. 2005, 34, 22–30; https://doi.org/10.1039/b406892k.Suche in Google Scholar PubMed

24. Opus (version 7.5); Bruker Optik GmbH: Ettlingen (Germany), 2014.Suche in Google Scholar

25. OriginPro (version 9.9.0.220), Data Analysis and Graphing Software; OriginLab Corp.: Northampton, Massachusetts (USA), 2022.Suche in Google Scholar

26. Harris, R. K., Becker, E. D., Cabral de Menezes, S. M., Granger, P., Hoffman, R. E., Zilm, K. W. Pure Appl. Chem. 2008, 80, 59–84; https://doi.org/10.1351/pac200880010059.Suche in Google Scholar

27. MNova (version 14.3); Mestrelab Research, S.L.: Santiago de Compostela (Spain), 2022.Suche in Google Scholar

28. Sheldrick, G. M. Sadabs (version 2016/2); Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Suche in Google Scholar

29. Apex-IV (version 4.0), Data Reduction and Frame Integration Program for the CCD Area-Detector System, Bruker AXS Inc.: Madison, Wisconsin (USA), 2021.Suche in Google Scholar

30. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

31. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Suche in Google Scholar

32. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

33. DIAMOND (version 4.65), Crystal and Molecular Structure Visualization; Crystal Impact – Dr. H. Putz & Dr. K. Brandenburg GbR: Bonn (Germany), 2023.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0095).


Received: 2023-11-01
Accepted: 2023-11-06
Published Online: 2024-01-12
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0095/html?lang=de
Button zum nach oben scrollen