[Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly
Abstract
The compounds [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4] were synthesized from commercially available starting materials and fully characterized by single-crystal X-ray diffraction, NMR, IR and Raman spectroscopy, as well as mass spectrometry. Both ammonium cations show potential for applications in crystal engineering due to their structure directing properties in the solid state.
Dedicated to Professor Wolfgang Bensch on the occasion of his 70th birthday.
Acknowledgment
We gratefully acknowledge the Core Facility BioSupraMol supported by the DFG. Open Access funding enabled and organized by Projekt DEAL.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. JRS performed the experiments and created the first draft of the manuscript. AW and PV performed single-crystal x-ray diffraction measurements. MJ and SR guided the project and corrected the drafts.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Desiraju, G. R. Angew. Chem. Int. Ed. 2007, 46, 8342–8356; https://doi.org/10.1002/anie.200700534.Suche in Google Scholar PubMed
2. Corpinot, M. K., Bučar, D.-K. Cryst. Growth Des. 2019, 19, 1426–1453; https://doi.org/10.1021/acs.cgd.8b00972.Suche in Google Scholar
3. Nangia, A. K., Desiraju, G. R. Angew. Chem. Int. Ed. 2019, 58, 4100–4107; https://doi.org/10.1002/anie.201811313.Suche in Google Scholar PubMed
4. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952–9967; https://doi.org/10.1021/ja403264c.Suche in Google Scholar PubMed
5. Brammer, L., Peuronen, A., Roseveare, T. M. Acta Crystallogr. 2023, C79, 204–216.10.1107/S2053229623004072Suche in Google Scholar PubMed PubMed Central
6. Schulz-Dobrick, M., Jansen, M. Inorg. Chem. 2007, 46, 4380–4382; https://doi.org/10.1021/ic700434x.Suche in Google Scholar PubMed
7. Gruber, F., Schulz-Dobrick, M., Jansen, M. Chem. Eur. J. 2010, 16, 1464–1469; https://doi.org/10.1002/chem.200902538.Suche in Google Scholar PubMed
8. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952–9967; https://doi.org/10.1021/ja403264c.Suche in Google Scholar
9. Scheiner, S. J. Chem. Phys. 2020, 153, 140901; https://doi.org/10.1063/5.0026168.Suche in Google Scholar PubMed
10. Jansen, M. Angew Chem. Int. Ed. Engl. 1987, 26, 1098–1110; https://doi.org/10.1002/anie.198710981.Suche in Google Scholar
11. Saßmannshausen, J. Dalton Trans. 2012, 41, 1919–1923; https://doi.org/10.1039/c1dt11213a.Suche in Google Scholar
12. Reger, D. L., Debreczeni, A., Horger, J. J., Smith, M. D. Cryst. Growth Des. 2011, 11, 4068–4079; https://doi.org/10.1021/cg200636k.Suche in Google Scholar
13. Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1637–1641; https://doi.org/10.1351/pac-rec-10-01-02.Suche in Google Scholar
14. Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., Beer, P. D. Chem. Rev. 2015, 115, 7118–7195; https://doi.org/10.1021/cr500674c.Suche in Google Scholar
15. Batten, S. R., Champness, N. R. Philos. Trans.: Math., Phys. Eng. Sci. 2017, 375, 4, 20160032; https://doi.org/10.1098/rsta.2016.0032.Suche in Google Scholar
16. Gruzdev, M. S., Vorobeva, V. E., Zueva, E. M., Chervonova, U. V., Petrova, M. M., Domracheva, N. E. Polyhedron 2018, 155, 415–424; https://doi.org/10.1016/j.poly.2018.08.072.Suche in Google Scholar
17. Harris, N., Shaik, S., Schröder, D., Schwarz, H. Helv. Chim. Acta 1999, 82, 1784–1797; https://doi.org/10.1002/(sici)1522-2675(19991006)82:10<1784::aid-hlca1784>3.0.co;2-m.10.1002/(SICI)1522-2675(19991006)82:10<1784::AID-HLCA1784>3.0.CO;2-MSuche in Google Scholar
18. Shirali, K., Shelton, W. A., Vekhter, I. J. Phys.: Condens. Matter 2020, 33, 035702; https://doi.org/10.1088/1361-648x/abbdbc.Suche in Google Scholar
19. Rauch, F., Fuchs, S., Friedrich, A., Sieh, D., Krummenacher, I., Braunschweig, H., Finze, M., Marder, T. B. Chem. Eur. J. 2020, 26, 12794–12808; https://doi.org/10.1002/chem.201905559.Suche in Google Scholar
20. Fuhrer, T. J., Houck, M., Iacono, S. T. ACS Omega 2021, 6, 32607–32617; https://doi.org/10.1021/acsomega.1c04175.Suche in Google Scholar
21. Bondi, A. J. Phys. Chem. 1964, 68, 441–451; https://doi.org/10.1021/j100785a001.Suche in Google Scholar
22. Alkorta, I., Rozas, I., Elguero, J. J. Am. Chem. Soc. 2002, 124, 8593–8598; https://doi.org/10.1021/ja025693t.Suche in Google Scholar PubMed
23. Reichenbächer, K., Süss, H. I., Hulliger, J. Chem. Soc. Rev. 2005, 34, 22–30; https://doi.org/10.1039/b406892k.Suche in Google Scholar PubMed
24. Opus (version 7.5); Bruker Optik GmbH: Ettlingen (Germany), 2014.Suche in Google Scholar
25. OriginPro (version 9.9.0.220), Data Analysis and Graphing Software; OriginLab Corp.: Northampton, Massachusetts (USA), 2022.Suche in Google Scholar
26. Harris, R. K., Becker, E. D., Cabral de Menezes, S. M., Granger, P., Hoffman, R. E., Zilm, K. W. Pure Appl. Chem. 2008, 80, 59–84; https://doi.org/10.1351/pac200880010059.Suche in Google Scholar
27. MNova (version 14.3); Mestrelab Research, S.L.: Santiago de Compostela (Spain), 2022.Suche in Google Scholar
28. Sheldrick, G. M. Sadabs (version 2016/2); Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Suche in Google Scholar
29. Apex-IV (version 4.0), Data Reduction and Frame Integration Program for the CCD Area-Detector System, Bruker AXS Inc.: Madison, Wisconsin (USA), 2021.Suche in Google Scholar
30. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central
31. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Suche in Google Scholar
32. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar
33. DIAMOND (version 4.65), Crystal and Molecular Structure Visualization; Crystal Impact – Dr. H. Putz & Dr. K. Brandenburg GbR: Bonn (Germany), 2023.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2023-0095).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
- A solid-state 171Yb NMR-spectroscopic characterization of selected divalent ytterbium intermetallics
- Modifying the valence phase transition in Eu2Al15Pt6 by the solid solutions Eu2Al15(Pt1−xT x )6 (T = Pd, Ir, Au; x = 1/6)
- Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3Ln[AsS4]2 mit Ln = La–Nd und Sm
- Expansion and adaptation of the M5B12O25(OH) structure type to incorporate di- and trivalent transition metal cations
- Synthesis and structure refinement of the zinc hydroxide boracite: Zn3B7O13(OH)
- [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
- A solid-state 171Yb NMR-spectroscopic characterization of selected divalent ytterbium intermetallics
- Modifying the valence phase transition in Eu2Al15Pt6 by the solid solutions Eu2Al15(Pt1−xT x )6 (T = Pd, Ir, Au; x = 1/6)
- Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3Ln[AsS4]2 mit Ln = La–Nd und Sm
- Expansion and adaptation of the M5B12O25(OH) structure type to incorporate di- and trivalent transition metal cations
- Synthesis and structure refinement of the zinc hydroxide boracite: Zn3B7O13(OH)
- [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly