Abstract
Cesium-containing thioarsenates(V) of lanthanoids with the composition Cs3Ln[AsS4]2 can be prepared for Ln = La–Nd and Sm by the oxidation of the lanthanoid metals in the presence of orpiment (As2S3), cesium sesquisulfide (Cs2S3) and elemental sulfur (S). The reaction mixtures were handled under argon atmosphere and heated in fused silica ampoules to a moderate reaction temperature of 500 °C. Single crystals of this Cs3Ln[AsS4]2 series appear as yellowish, transparent rods that are not stable to moist air and water. Their monoclinic crystal structure was determined from single-crystal X-ray diffraction data. The cesium-containing thioarsenates(V) Cs3Ln[AsS4]2 with Ln = La–Nd and Sm crystallize isotypically with Rb3Sm[PS4]2 in the non-centrosymmetric monoclinic space group P21 with Z = 2. The lattice parameters range between a = 997–1015 pm, b = 699–703 pm, c = 1192–1195 pm and β = 90.2–90.4°. There are two crystallographically different As5+ cations and one unique Ln3+ cation present, all coordinated by sulfur anions. Tetrahedral [AsS4]3− anions form two functionally different units working either as bridging units between three Ln3+ cations or as terminal ligands for Ln3+. [LnS8]13− polyhedra form
Dedicated to Professor Wolfgang Bensch on the occasion of his 70th birthday.
Danksagung
Wir danken Dr. Falk Lissner für die Einkristallmessungen.
-
Forschungsethik: Entfällt.
-
Autorenbeiträge: Die Autoren übernehmen die Verantwortung für den gesamten Inhalt dieses Manuskripts und haben die Einreichung genehmigt.
-
Forschungsförderung: Die Autoren danken dem Land Baden-Württemberg für die finanzielle Unterstützung.
-
Erklärung zum Interessenkonflikt: Die Autoren erklären, dass keine Interessenkonflikte in Bezug auf diesen Artikel bestehen.
-
Datenverfügbarkeit: Entfällt.
Literatur
1. Milot, S., Wu, Y., Näther, C., Bensch, W., Klepp, K. O. Z. Anorg. Allg. Chem. 2008, 634, 1575–1580; https://doi.org/10.1002/zaac.200800154.Search in Google Scholar
2. Gutzmann, A., Bensch, W. Solid State Sci. 2002, 4, 835–840; https://doi.org/10.1016/s1293-2558(02)01296-7.Search in Google Scholar
3. Gutzmann, A., Bensch, W. Solid State Sci. 2003, 5, 1271–1276; https://doi.org/10.1016/s1293-2558(03)00155-9.Search in Google Scholar
4. Gutzmann, A., Näther, C., Bensch, W. Solid State Sci. 2004, 6, 205–211; https://doi.org/10.1016/j.solidstatesciences.2003.11.006.Search in Google Scholar
5. Gutzmann, A., Näther, C., Bensch, W. Inorg. Chem. 2004, 43, 2998–3004; https://doi.org/10.1021/ic035273k.Search in Google Scholar PubMed
6. Gutzmann, A., Näther, C., Bensch, W. Z. Anorg. Allg. Chem. 2005, 631, 524–529; https://doi.org/10.1002/zaac.200400388.Search in Google Scholar
7. McCarthy, T., Kanatzidis, M. G. J. Alloys Compd. 1996, 236, 70–85; https://doi.org/10.1016/0925-8388(95)02161-2.Search in Google Scholar
8. Bera, T. K., Kanatzidis, M. G. Inorg. Chem. 2008, 47, 7068–7070; https://doi.org/10.1021/ic801017h.Search in Google Scholar PubMed
9. Wu, Y., Bensch, W. Solid State Sci. 2009, 11, 1542–1548; https://doi.org/10.1016/j.solidstatesciences.2009.06.027.Search in Google Scholar
10. Wu, Y., Bensch, W. Inorg. Chem. 2008, 47, 7523–7534; https://doi.org/10.1021/ic800143x.Search in Google Scholar PubMed
11. Wu, Y., Näther, C., Bensch, W. Inorg. Chem. 2006, 45, 8835–8837; https://doi.org/10.1021/ic060933h.Search in Google Scholar PubMed
12. Komm, T., Gudat, D., Schleid, Th. Z. Naturforsch. 2006, 61b, 766–774; https://doi.org/10.1515/znb-2006-0618.Search in Google Scholar
13. Cleary, D. A., Twamley, B. Inorg. Chim. Acta 2003, 353, 183–186; https://doi.org/10.1016/s0020-1693(03)00290-1.Search in Google Scholar
14. Lange, P., Engel, K., Schleid, Th. Acta Crystallogr. 2022, A78, e548–e549; https://doi.org/10.1107/s2053273322092117.Search in Google Scholar
15. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar
16. Sheldrick, G. M. Shelxs-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar
17. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central
18. Flack, H. D. Acta Crystallogr. 1983, A39, 876–881; https://doi.org/10.1107/s0108767383001762.Search in Google Scholar
19. Bera, T. K., Iyer, R. G., Malliakas, C. D., Kanatzidis, M. G. Inorg. Chem. 2007, 46, 8466–8468; https://doi.org/10.1021/ic701067r.Search in Google Scholar PubMed
20. Scholz, T., Pielnhofer, F., Eger, R., Lotsch, B. V. Z. Naturforsch. 2020, 75b, 225–231; https://doi.org/10.1515/znb-2019-0217.Search in Google Scholar
21. Stefanovich, V. A., Voroshilov, Y. V., Potorii, M. V., Roman, I. Y., Gerasimenko, V. S., Slivka, V. Y. J. Appl. Spectrosc. 1979, 31, 868–871; https://doi.org/10.1007/bf00608550.Search in Google Scholar
22. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
23. Engel, K. Einblicke in die Welt der Lanthanoid-Thioarsenate. Dissertation, Universität Stuttgart, Stuttgart, in Vorbereitung.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
- A solid-state 171Yb NMR-spectroscopic characterization of selected divalent ytterbium intermetallics
- Modifying the valence phase transition in Eu2Al15Pt6 by the solid solutions Eu2Al15(Pt1−xT x )6 (T = Pd, Ir, Au; x = 1/6)
- Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3Ln[AsS4]2 mit Ln = La–Nd und Sm
- Expansion and adaptation of the M5B12O25(OH) structure type to incorporate di- and trivalent transition metal cations
- Synthesis and structure refinement of the zinc hydroxide boracite: Zn3B7O13(OH)
- [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
- A solid-state 171Yb NMR-spectroscopic characterization of selected divalent ytterbium intermetallics
- Modifying the valence phase transition in Eu2Al15Pt6 by the solid solutions Eu2Al15(Pt1−xT x )6 (T = Pd, Ir, Au; x = 1/6)
- Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3Ln[AsS4]2 mit Ln = La–Nd und Sm
- Expansion and adaptation of the M5B12O25(OH) structure type to incorporate di- and trivalent transition metal cations
- Synthesis and structure refinement of the zinc hydroxide boracite: Zn3B7O13(OH)
- [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly