Startseite The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy

  • Thomas Harmening , Samir F. Matar , Constanze Fehse , Steffen Klenner , Hellmut Eckert , Jutta Kösters , Wilma Pröbsting , Stefan Seidel und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 12. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The TiMnSi2-type (space group Pbam) germanides ScTGe2 (T = Fe, Co, Ru, Rh) were synthesized from the elements by arc-melting. Single crystals were grown by annealing sequences of the arc-melted buttons in an induction furnace. The structures of ScFeGe2, ScRuGe2 and ScRhGe2 were refined from single-crystal X-ray diffraction data. In ScRuGe2, the ruthenium atoms have distorted octahedral germanium coordination (242–268 pm Ru–Ge). Three trans-face-sharing octahedra form a sub-unit which is condensed via common edges in c direction and connected via common corners with four adjacent blocks, forming a three-dimensional [RuGe2 type] substructure. The two crystallographically independent scandium sites have coordination numbers 15 (Sc1@Ge8Ru4Sc3) and 17 (Sc2@Ge7Ru6Sc4). Electronic band structure calculations for ScCoGe2 and ScRuGe2 show a net charge transfer from the scandium to the transition metal and germanium atoms, leading to a description with polyanionic networks Scδ+[TGe2]δ−. The two crystallographically independent Sc sites are easily distinguishable by 45Sc magic-angle spinning (MAS)-NMR spectroscopy. Isotropic chemical shift values and nuclear electric quadrupolar interaction parameters were deduced from an analysis of the triple-quantum (TQ)-MAS NMR spectra. The electric field gradient parameters deduced from these experiments are in good agreement with quantum-chemical calculations using the Wien2k code. Likewise, the two crystallographically independent iron sites in ScFeGe2 could be discriminated in the 57Fe Mößbauer spectra through their isomer shifts and quadrupole splitting parameters: δ = 0.369(1) mm s−1 and ∆EQ = 0.232(2)  mm s−1 for Fe1 and δ = 0.375(2) mm s−1 and ∆EQ = 0.435(4) mm s−1 for Fe2 (data at T = 78 K).


Dedicated to Professor Wolfgang Bensch on the occasion of his 70th birthday.



Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald and Dr. R.-D. Hoffmann for the intensity data collections and Dr. F. Eustermann for the EDX analyses.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster.

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Eckert, H., Pöttgen, R. Solid state NMR and Mössbauer spectroscopy. In Rare Earth Chemistry; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds. De Gruyter: Berlin, 2020; chapter 3.6; pp. 299–321.10.1515/9783110654929-021Suche in Google Scholar

2. Eckert, H. Solid state NMR of the rare earth nuclei: applications in solid-state inorganic chemistry. In Comprehensive Inorganic Chemistry III; Bryce, D. L., Reedijk, J., Poeppelmeier, K. R., Eds. Elsevier: Amsterdam, Vol. 9, 2023, chapter 8; pp. 178–208.10.1016/B978-0-12-823144-9.00164-3Suche in Google Scholar

3. Thompson, A. R., Oldfield, E. J. Chem. Soc., Chem. Commun. 1987, 27–29; https://doi.org/10.1039/c39870000027.Suche in Google Scholar

4. Rossini, A. J., Schurko, R. W. J. Am. Chem. Soc. 2006, 128, 10391–10402; https://doi.org/10.1021/ja060477w.Suche in Google Scholar PubMed

5. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Suche in Google Scholar

6. Alba, M. D., Chain, P., Florian, P., Massiot, D. J. Phys. Chem. C 2010, 114, 12125–12132; https://doi.org/10.1021/jp1036525.Suche in Google Scholar

7. Bräuniger, T., Hofmann, A. J., Moudrakovski, I. L., Hoch, C., Schnick, W. Solid State Sci. 2016, 51, 1–7; https://doi.org/10.1016/j.solidstatesciences.2015.11.002.Suche in Google Scholar

8. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Suche in Google Scholar

9. Heying, B., Haverkamp, S., Rodewald, U.Ch., Eckert, H., Peter, S. C., Pöttgen, R. Solid State Sci. 2015, 39, 15–22; https://doi.org/10.1016/j.solidstatesciences.2014.11.001.Suche in Google Scholar

10. Harmening, T., Sebastian, C. P., Zhang, L., Fehse, C., Eckert, H., Pöttgen, R. Solid State Sci. 2008, 10, 1395–1400; https://doi.org/10.1016/j.solidstatesciences.2008.02.002.Suche in Google Scholar

11. Harmening, T., Eckert, H., Pöttgen, R. Solid State Sci. 2009, 11, 900–906; https://doi.org/10.1016/j.solidstatesciences.2008.12.007.Suche in Google Scholar

12. Harmening, T., van Wüllen, L., Eckert, H., Rodewald, U.Ch., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 972–976; https://doi.org/10.1002/zaac.201000003.Suche in Google Scholar

13. Sebastian, C. P., Zhang, L., Fehse, C., Hoffmann, R.-D., Eckert, H., Pöttgen, R. Inorg. Chem. 2007, 46, 771–779; https://doi.org/10.1021/ic061691o.Suche in Google Scholar

14. Yarmolyuk, Y. P., Sikiritsa, M., Aksel’rud, L. G., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1982, 27, 652–653.10.1037/021411Suche in Google Scholar

15. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, (release 2022/23); ASM International®: Materials Park: Ohio (USA), 2022.Suche in Google Scholar

16. Meyer, M., Venturini, G., Malaman, B., Steinmetz, J., Roques, B. Mater. Res. Bull. 1983, 18, 1529–1535; https://doi.org/10.1016/0025-5408(83)90194-0.Suche in Google Scholar

17. Parthé, E., Chabot, B. Crystal structures and crystal chemistry of ternary rare earth transition metal borides, silicides and homologues. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland: Amsterdam, Vol. 6, chapter 48, 1984; pp. 113–334.10.1016/S0168-1273(84)06005-0Suche in Google Scholar

18. Kotur, B. Y., Kravs, A. B., Andrusyak, R. I. Russ. Metall. 1988, 6, 192–195.Suche in Google Scholar

19. Venturini, G., Méot-Meyer, M., Roques, B. J. Less-Common Met. 1985, 107, L5–L7; https://doi.org/10.1016/0022-5088(85)90095-5.Suche in Google Scholar

20. Andrusyak, R. I., Kotur, B. Y. Russ. Metall. 1991, 4, 204–208.Suche in Google Scholar

21. Kotur, B. Y., Andrusyak, R. I. Inorg. Mater. 1991, 27, 1207–1212.Suche in Google Scholar

22. Skolozdra, R. V., Kotur, B. Y., Andrusyak, R. I., Gorelenko, Yu. K. Inorg. Mater. 1991, 27, 1371–1374.Suche in Google Scholar

23. Kotur, B. Y. J. Alloys Compd. 1995, 219, 88–92; https://doi.org/10.1016/0925-8388(94)05013-9.Suche in Google Scholar

24. Kotur, B. Y., Bodak, O. I., Stepien-Damm, J. Z. Kristallogr. 1996, 211, 117.10.1524/zkri.1996.211.2.117Suche in Google Scholar

25. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar

26. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.0.co;2-0.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar

27. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

28. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar

29. Hohenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Suche in Google Scholar

30. Kohn, W., Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Suche in Google Scholar

31. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Suche in Google Scholar PubMed

32. Kresse, G., Joubert, J. Phys. Rev. B 1999, 59, 1758–1775; https://doi.org/10.1103/physrevb.59.1758.Suche in Google Scholar

33. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979; https://doi.org/10.1103/physrevb.50.17953.Suche in Google Scholar PubMed

34. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

35. Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; https://doi.org/10.1021/cr00005a013.Suche in Google Scholar

36. Williams, A. R., Kübler, J., Gelatt, C. D.Jr. Phys. Rev. B 1979, 19, 6094–6118; https://doi.org/10.1103/physrevb.19.6094.Suche in Google Scholar

37. Eyert, V. The augmented spherical wave method–a comprehensive treatment. In Lecture Notes in Physics, 2nd ed.; Springer: Berlin, Heidelberg, Vol. 849, 2013.10.1007/978-3-642-25864-0Suche in Google Scholar

38. Hoffmann, R. Angew Chem. Int. Ed. Engl. 1987, 26, 846–878; https://doi.org/10.1002/anie.198708461.Suche in Google Scholar

39. Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., Hoatson, G. Magn. Reson. Chem. 2002, 40, 70–76; https://doi.org/10.1002/mrc.984.Suche in Google Scholar

40. Amoureux, J. P. F. C., Steuernagel, S. J. Magn. Reson. A 1996, 123, 116–118; https://doi.org/10.1006/jmra.1996.0221.Suche in Google Scholar PubMed

41. Medek, A., Frydman, J. J. Braz. Chem. Soc. 1999, 10, 263–277.10.1590/S0103-50531999000400003Suche in Google Scholar

42. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J. Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; Schwarz, K. H., Ed. Vienna University of Technology: Vienna (Austria), 2001.Suche in Google Scholar

43. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Suche in Google Scholar

44. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Suche in Google Scholar

45. CorelDRAW Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Suche in Google Scholar

46. Steinmetz, J., Venturini, G., Roques, B., Engel, N., Chabot, B., Parthé, E. Acta Crystallogr. 1982, B38, 2103–2108; https://doi.org/10.1107/s0567740882008140.Suche in Google Scholar

47. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

48. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

49. Gulay, N. L., Osthues, H., Amirjalayer, S., Doltsinis, N. L., Reimann, M. K., Kalychak, Ya. M., Pöttgen, R. Dalton Trans. 2022, 51, 14156–14164; https://doi.org/10.1039/d2dt02357a.Suche in Google Scholar PubMed

50. Pöttgen, R., Jeitschko, W. Inorg. Chem. 1991, 30, 427–431; https://doi.org/10.1021/ic00003a013.Suche in Google Scholar

51. Li, G., Fang, Q., Shi, N., Bai, W., Yang, J., Xiong, M., Ma, Z., Rong, H. Can. Mineral. 2009, 47, 1265–1274.Suche in Google Scholar

52. Greenwood, N. N., Gibb, T. C. Mössbauer Spectroscopy; Chapman and Hall Ltd.: London, 1971.10.1007/978-94-009-5697-1Suche in Google Scholar

53. Menil, F. J. Phys. Chem. Solids 1985, 46, 763–789; https://doi.org/10.1016/0022-3697(85)90001-0.Suche in Google Scholar

54. van der Kraan, A. M., Buschow, K. H. J. Physica B 1986, 138, 55–62; https://doi.org/10.1016/0378-4363(86)90492-4.Suche in Google Scholar

55. Stein, S., Block, T., Klenner, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2019, 74b, 211–219; https://doi.org/10.1515/znb-2018-0237.Suche in Google Scholar

Received: 2023-08-18
Accepted: 2023-09-05
Published Online: 2024-01-12
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0068/html
Button zum nach oben scrollen