The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
-
Thomas Harmening
Abstract
The TiMnSi2-type (space group Pbam) germanides ScTGe2 (T = Fe, Co, Ru, Rh) were synthesized from the elements by arc-melting. Single crystals were grown by annealing sequences of the arc-melted buttons in an induction furnace. The structures of ScFeGe2, ScRuGe2 and ScRhGe2 were refined from single-crystal X-ray diffraction data. In ScRuGe2, the ruthenium atoms have distorted octahedral germanium coordination (242–268 pm Ru–Ge). Three trans-face-sharing octahedra form a sub-unit which is condensed via common edges in c direction and connected via common corners with four adjacent blocks, forming a three-dimensional [RuGe2 type] substructure. The two crystallographically independent scandium sites have coordination numbers 15 (Sc1@Ge8Ru4Sc3) and 17 (Sc2@Ge7Ru6Sc4). Electronic band structure calculations for ScCoGe2 and ScRuGe2 show a net charge transfer from the scandium to the transition metal and germanium atoms, leading to a description with polyanionic networks Scδ+[TGe2]δ−. The two crystallographically independent Sc sites are easily distinguishable by 45Sc magic-angle spinning (MAS)-NMR spectroscopy. Isotropic chemical shift values and nuclear electric quadrupolar interaction parameters were deduced from an analysis of the triple-quantum (TQ)-MAS NMR spectra. The electric field gradient parameters deduced from these experiments are in good agreement with quantum-chemical calculations using the Wien2k code. Likewise, the two crystallographically independent iron sites in ScFeGe2 could be discriminated in the 57Fe Mößbauer spectra through their isomer shifts and quadrupole splitting parameters: δ = 0.369(1) mm s−1 and ∆EQ = 0.232(2) mm s−1 for Fe1 and δ = 0.375(2) mm s−1 and ∆EQ = 0.435(4) mm s−1 for Fe2 (data at T = 78 K).
Dedicated to Professor Wolfgang Bensch on the occasion of his 70th birthday.
Acknowledgments
We thank Dipl.-Ing. U. Ch. Rodewald and Dr. R.-D. Hoffmann for the intensity data collections and Dr. F. Eustermann for the EDX analyses.
-
Research ethics: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Eckert, H., Pöttgen, R. Solid state NMR and Mössbauer spectroscopy. In Rare Earth Chemistry; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds. De Gruyter: Berlin, 2020; chapter 3.6; pp. 299–321.10.1515/9783110654929-021Suche in Google Scholar
2. Eckert, H. Solid state NMR of the rare earth nuclei: applications in solid-state inorganic chemistry. In Comprehensive Inorganic Chemistry III; Bryce, D. L., Reedijk, J., Poeppelmeier, K. R., Eds. Elsevier: Amsterdam, Vol. 9, 2023, chapter 8; pp. 178–208.10.1016/B978-0-12-823144-9.00164-3Suche in Google Scholar
3. Thompson, A. R., Oldfield, E. J. Chem. Soc., Chem. Commun. 1987, 27–29; https://doi.org/10.1039/c39870000027.Suche in Google Scholar
4. Rossini, A. J., Schurko, R. W. J. Am. Chem. Soc. 2006, 128, 10391–10402; https://doi.org/10.1021/ja060477w.Suche in Google Scholar PubMed
5. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Suche in Google Scholar
6. Alba, M. D., Chain, P., Florian, P., Massiot, D. J. Phys. Chem. C 2010, 114, 12125–12132; https://doi.org/10.1021/jp1036525.Suche in Google Scholar
7. Bräuniger, T., Hofmann, A. J., Moudrakovski, I. L., Hoch, C., Schnick, W. Solid State Sci. 2016, 51, 1–7; https://doi.org/10.1016/j.solidstatesciences.2015.11.002.Suche in Google Scholar
8. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Suche in Google Scholar
9. Heying, B., Haverkamp, S., Rodewald, U.Ch., Eckert, H., Peter, S. C., Pöttgen, R. Solid State Sci. 2015, 39, 15–22; https://doi.org/10.1016/j.solidstatesciences.2014.11.001.Suche in Google Scholar
10. Harmening, T., Sebastian, C. P., Zhang, L., Fehse, C., Eckert, H., Pöttgen, R. Solid State Sci. 2008, 10, 1395–1400; https://doi.org/10.1016/j.solidstatesciences.2008.02.002.Suche in Google Scholar
11. Harmening, T., Eckert, H., Pöttgen, R. Solid State Sci. 2009, 11, 900–906; https://doi.org/10.1016/j.solidstatesciences.2008.12.007.Suche in Google Scholar
12. Harmening, T., van Wüllen, L., Eckert, H., Rodewald, U.Ch., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 972–976; https://doi.org/10.1002/zaac.201000003.Suche in Google Scholar
13. Sebastian, C. P., Zhang, L., Fehse, C., Hoffmann, R.-D., Eckert, H., Pöttgen, R. Inorg. Chem. 2007, 46, 771–779; https://doi.org/10.1021/ic061691o.Suche in Google Scholar
14. Yarmolyuk, Y. P., Sikiritsa, M., Aksel’rud, L. G., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1982, 27, 652–653.10.1037/021411Suche in Google Scholar
15. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, (release 2022/23); ASM International®: Materials Park: Ohio (USA), 2022.Suche in Google Scholar
16. Meyer, M., Venturini, G., Malaman, B., Steinmetz, J., Roques, B. Mater. Res. Bull. 1983, 18, 1529–1535; https://doi.org/10.1016/0025-5408(83)90194-0.Suche in Google Scholar
17. Parthé, E., Chabot, B. Crystal structures and crystal chemistry of ternary rare earth transition metal borides, silicides and homologues. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland: Amsterdam, Vol. 6, chapter 48, 1984; pp. 113–334.10.1016/S0168-1273(84)06005-0Suche in Google Scholar
18. Kotur, B. Y., Kravs, A. B., Andrusyak, R. I. Russ. Metall. 1988, 6, 192–195.Suche in Google Scholar
19. Venturini, G., Méot-Meyer, M., Roques, B. J. Less-Common Met. 1985, 107, L5–L7; https://doi.org/10.1016/0022-5088(85)90095-5.Suche in Google Scholar
20. Andrusyak, R. I., Kotur, B. Y. Russ. Metall. 1991, 4, 204–208.Suche in Google Scholar
21. Kotur, B. Y., Andrusyak, R. I. Inorg. Mater. 1991, 27, 1207–1212.Suche in Google Scholar
22. Skolozdra, R. V., Kotur, B. Y., Andrusyak, R. I., Gorelenko, Yu. K. Inorg. Mater. 1991, 27, 1371–1374.Suche in Google Scholar
23. Kotur, B. Y. J. Alloys Compd. 1995, 219, 88–92; https://doi.org/10.1016/0925-8388(94)05013-9.Suche in Google Scholar
24. Kotur, B. Y., Bodak, O. I., Stepien-Damm, J. Z. Kristallogr. 1996, 211, 117.10.1524/zkri.1996.211.2.117Suche in Google Scholar
25. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar
26. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.0.co;2-0.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar
27. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
28. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar
29. Hohenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Suche in Google Scholar
30. Kohn, W., Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Suche in Google Scholar
31. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Suche in Google Scholar PubMed
32. Kresse, G., Joubert, J. Phys. Rev. B 1999, 59, 1758–1775; https://doi.org/10.1103/physrevb.59.1758.Suche in Google Scholar
33. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979; https://doi.org/10.1103/physrevb.50.17953.Suche in Google Scholar PubMed
34. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar
35. Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; https://doi.org/10.1021/cr00005a013.Suche in Google Scholar
36. Williams, A. R., Kübler, J., Gelatt, C. D.Jr. Phys. Rev. B 1979, 19, 6094–6118; https://doi.org/10.1103/physrevb.19.6094.Suche in Google Scholar
37. Eyert, V. The augmented spherical wave method–a comprehensive treatment. In Lecture Notes in Physics, 2nd ed.; Springer: Berlin, Heidelberg, Vol. 849, 2013.10.1007/978-3-642-25864-0Suche in Google Scholar
38. Hoffmann, R. Angew Chem. Int. Ed. Engl. 1987, 26, 846–878; https://doi.org/10.1002/anie.198708461.Suche in Google Scholar
39. Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., Hoatson, G. Magn. Reson. Chem. 2002, 40, 70–76; https://doi.org/10.1002/mrc.984.Suche in Google Scholar
40. Amoureux, J. P. F. C., Steuernagel, S. J. Magn. Reson. A 1996, 123, 116–118; https://doi.org/10.1006/jmra.1996.0221.Suche in Google Scholar PubMed
41. Medek, A., Frydman, J. J. Braz. Chem. Soc. 1999, 10, 263–277.10.1590/S0103-50531999000400003Suche in Google Scholar
42. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J. Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; Schwarz, K. H., Ed. Vienna University of Technology: Vienna (Austria), 2001.Suche in Google Scholar
43. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Suche in Google Scholar
44. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Suche in Google Scholar
45. CorelDRAW Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Suche in Google Scholar
46. Steinmetz, J., Venturini, G., Roques, B., Engel, N., Chabot, B., Parthé, E. Acta Crystallogr. 1982, B38, 2103–2108; https://doi.org/10.1107/s0567740882008140.Suche in Google Scholar
47. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
48. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
49. Gulay, N. L., Osthues, H., Amirjalayer, S., Doltsinis, N. L., Reimann, M. K., Kalychak, Ya. M., Pöttgen, R. Dalton Trans. 2022, 51, 14156–14164; https://doi.org/10.1039/d2dt02357a.Suche in Google Scholar PubMed
50. Pöttgen, R., Jeitschko, W. Inorg. Chem. 1991, 30, 427–431; https://doi.org/10.1021/ic00003a013.Suche in Google Scholar
51. Li, G., Fang, Q., Shi, N., Bai, W., Yang, J., Xiong, M., Ma, Z., Rong, H. Can. Mineral. 2009, 47, 1265–1274.Suche in Google Scholar
52. Greenwood, N. N., Gibb, T. C. Mössbauer Spectroscopy; Chapman and Hall Ltd.: London, 1971.10.1007/978-94-009-5697-1Suche in Google Scholar
53. Menil, F. J. Phys. Chem. Solids 1985, 46, 763–789; https://doi.org/10.1016/0022-3697(85)90001-0.Suche in Google Scholar
54. van der Kraan, A. M., Buschow, K. H. J. Physica B 1986, 138, 55–62; https://doi.org/10.1016/0378-4363(86)90492-4.Suche in Google Scholar
55. Stein, S., Block, T., Klenner, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2019, 74b, 211–219; https://doi.org/10.1515/znb-2018-0237.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
- A solid-state 171Yb NMR-spectroscopic characterization of selected divalent ytterbium intermetallics
- Modifying the valence phase transition in Eu2Al15Pt6 by the solid solutions Eu2Al15(Pt1−xT x )6 (T = Pd, Ir, Au; x = 1/6)
- Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3Ln[AsS4]2 mit Ln = La–Nd und Sm
- Expansion and adaptation of the M5B12O25(OH) structure type to incorporate di- and trivalent transition metal cations
- Synthesis and structure refinement of the zinc hydroxide boracite: Zn3B7O13(OH)
- [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- The germanides ScTGe2 (T = Fe, Co, Ru, Rh) – crystal chemistry, 45Sc solid-state NMR and 57Fe Mössbauer spectroscopy
- A solid-state 171Yb NMR-spectroscopic characterization of selected divalent ytterbium intermetallics
- Modifying the valence phase transition in Eu2Al15Pt6 by the solid solutions Eu2Al15(Pt1−xT x )6 (T = Pd, Ir, Au; x = 1/6)
- Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3Ln[AsS4]2 mit Ln = La–Nd und Sm
- Expansion and adaptation of the M5B12O25(OH) structure type to incorporate di- and trivalent transition metal cations
- Synthesis and structure refinement of the zinc hydroxide boracite: Zn3B7O13(OH)
- [Me3N(C6H3(CF3)2)][BF4] and [Me3N(C6H3(CH3)2)][BF4], as potential synthons for non-covalent supramolecular assembly