Abstract
Understanding the chemisorption of atoms on precious metal surfaces is of substantial interest for the rational design of heterogeneous and electrochemical catalysts. In this study, we report density functional theory (DFT) investigations of the chemisorption of atomic H and O on bimetallic Pt x Ir y (111) surfaces for bifunctional anode catalyst materials in polymer electrolyte membrane (PEM) fuel cells. We found that for both adsorbates, the adsorption on the Pt(111) surface is in general less exothermic than on the Ir(111) surface. Our study has revealed that chemisorption on the bimetallic surfaces becomes more stable with increasing number of Ir surface atoms at the adsorption site. While for hydrogen atoms the ONTOP sites yield the most negative adsorption energies, the chemisorption of oxygen atoms appears to be most stable on the FCC sites for both the mono- and bimetallic surfaces. Using the ab initio thermodynamics approach, we calculated phase diagrams for the chemisorption of H and O atoms on these metal surfaces in order to transfer our findings to finite temperature and pressure conditions. Our theoretical results may provide an improved understanding of the hydrogen oxidation reaction (HOR) and oxygen evolution reaction (OER) on intermetallic Pt x Ir y (111) surfaces and may be helpful for the rational design of new bifunctional PEM fuel cell anode catalyst materials.
Funding source: German Federal Ministry of Education and Research
Award Identifier / Grant number: 03SF0617B
Funding source: German Federal Ministry of Education and Research
Award Identifier / Grant number: 03SF0617A
Funding source: German Research Foundation (DFG)
Award Identifier / Grant number: INST 184/157-1 FUGG
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: We thank the BMBF for financial support via the joint projects ECatPEMFCplus/03SF0617B and 03SF0617A. The simulations were performed at the HPC Cluster CARL, located at the University of Oldenburg (Germany) and funded by the DFG through its Major Research Instrumentation Programme (INST 184/157-1 FUGG) and the Ministry of Science and Culture (MWK) of the State of Lower Saxony.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Kongkanand, A., Mathias, M. F. J. Phys. Chem. Lett. 2016, 7, 1127–1137; https://doi.org/10.1021/acs.jpclett.6b00216.Search in Google Scholar PubMed
2. Edwards, P. P., Kuznetsov, V. L., David, W. I. F., Brandon, N. P. Energy Policy 2008, 36, 4356–4362; https://doi.org/10.1016/j.enpol.2008.09.036.Search in Google Scholar
3. Janssen, M., Weber, P., Oezaslan, M. Curr. Opin. Electrochem. 2023, 40, 101337; https://doi.org/10.1149/1945-7111/abad68.Search in Google Scholar
4. Weber, P., Weber, D. J., Dosche, C., Oezaslan, M. ACS Catal. 2022, 12, 6394–6408; https://doi.org/10.1021/acscatal.2c00514.Search in Google Scholar
5. Bizzotto, F., Quinson, J., Zana, A., Kirkensgaard, J. J. K., Dworzak, A., Oezaslan, M., Arenz, M. Catal. Sci. Technol. 2019, 9, 6345–6356; https://doi.org/10.1039/C9CY01728C.Search in Google Scholar
6. Marić, R., Gebauer, C., Nesselberger, M., Hasché, F., Strasser, P. J. Electrochem. Soc. 2020, 167, 124520; https://doi.org/10.1149/1945-7111/abad68.Search in Google Scholar
7. Reuter, K. Catal. Lett. 2016, 146, 541–563; https://doi.org/10.1007/s10562-015-1684-3.Search in Google Scholar
8. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169; https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed
9. Kresse, G., Joubert, D. Phys. Rev. B 1999, 59, 1758; https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar
10. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
11. Methfessel, M., Paxton, A. T. Phys. Rev. B 1989, 40, 3616; https://doi.org/10.1103/physrevb.40.3616.Search in Google Scholar PubMed
12. Monkhorst, H. J., Pack, J. D. Phys. Rev. B 1976, 13, 5188; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar
13. Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K., Lysgaard, S., Maronsson, J. B., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zhenhua, Z., Jacobsen, K. W. J. Phys.: Condens. Matter 2017, 29, 273002.10.1088/1361-648X/aa680eSearch in Google Scholar PubMed
14. Sözen, H. I., Ener, S., Maccari, F., Skokov, K. P., Gutfleisch, O., Körmann, F., Neugebauer, J., Hickel, T. Phys. Rev. Mater. 2019, 3, 084407; https://doi.org/10.1103/PhysRevMaterials.3.084407.Search in Google Scholar
15. Sözen, H. I., Hickel, T., Neugebauer, J. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 2020, 68, 101731; https://doi.org/10.1016/j.calphad.2019.101731.Search in Google Scholar
16. Sözen, H. I., Klüner, T. J. Magn. Magn. Mater. 2022, 559, 169529; https://doi.org/10.1016/j.jmmm.2022.169529.Search in Google Scholar
17. Erdmann, S., Klüner, T., Sözen, H. I. J. Magn. Magn. Mater. 2023, 572, 170645; https://doi.org/10.1016/j.jmmm.2023.170645.Search in Google Scholar
18. Sözen, H. I. Ab initio phase stabilities of Ce-based hard magnetic materials; Dissertation, Ruhr-Universität Bochum: Bochum, 2019.Search in Google Scholar
19. Sözen, H. I., Ener, S., Maccari, F., Fayyazi, B., Gutfleisch, O., Neugebauer, J., Hickel, T. Phys. Rev. Mater. 2023, 7, 014410; https://doi.org/10.1103/PhysRevMaterials.7.014410.Search in Google Scholar
20. Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., Syverud, A. N., Eds. NIST-JANAF Thermochemical Tables (release 1985); National Institute of Standards and Technology: Gaithersburg, Maryland (USA), 1985.Search in Google Scholar
21. Vurdu, C. D. Adv. Condens. Matter Phys. 2018, 2018, 4186968; https://doi.org/10.1155/2018/4186968.Search in Google Scholar
22. Ferrin, P., Kandoi, S., Nilekar, A. U., Mavrikakis, M. Surf. Sci. 2012, 606, 679–689; https://doi.org/10.1016/j.susc.2011.12.017.Search in Google Scholar
23. Watson, G. W., Wells, R. P. K., Willock, D. J., Hutchings, G. J. J. Phys. Chem. B 2001, 105, 4889–4894; https://doi.org/10.1021/jp002864c.Search in Google Scholar
24. Ford, D. C., Xu, Y., Mavrikakis, M. Surf. Sci. 2005, 587, 159–174; https://doi.org/10.1016/j.susc.2005.04.028.Search in Google Scholar
25. Hanh, T. T. T., Takimoto, Y., Sugino, O. Surf. Sci. 2014, 625, 104–111; https://doi.org/10.1016/j.susc.2014.03.006.Search in Google Scholar
26. Zhang, H., Li, W.-X. J. Phys. Chem. C 2009, 113, 21361–21367; https://doi.org/10.1021/jp9074866.Search in Google Scholar
27. Will, F. G. J. Electrochem. Soc. 1965, 112(5), 451; https://doi.org/10.1149/1.2423567.Search in Google Scholar
28. Faglioni, F., Goddard, W. A.III J. Chem. Phys. 2005, 122, 014704; https://doi.org/10.1063/1.1814938.Search in Google Scholar PubMed
29. Wang, Y., Wang, G., Li, G., Huang, B., Pan, J., Liu, Q., Han, J., Xiao, L., Lu, J., Zhuang, L. Energy Environ. Sci. 2015, 8, 177–181; https://doi.org/10.1039/c4ee02564d.Search in Google Scholar
30. Zheng, J., Zhuang, Z., Xu, B., Yan, Y. ACS Catal. 2015, 5, 4449–4455; https://doi.org/10.1021/acscatal.5b00247.Search in Google Scholar
31. Sheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J. G., Yan, Y. Nat. Commun. 2015, 6, 5848; https://doi.org/10.1038/ncomms6848.Search in Google Scholar PubMed
32. Durst, J., Siebel, A., Simon, C., Hasché, F., Herranz, J., Gasteiger, H. A. Energy Environ. Sci. 2014, 7, 2255–2260; https://doi.org/10.1039/c4ee00440j.Search in Google Scholar
33. Strmcnik, D., Uchimura, M., Wang, C., Subbaraman, R., Danilovic, N., van der Vliet, D., Paulikas, A. P., Stamenkovic, V. R., Markovic, N. M. Nat. Chem. 2013, 5, 300–306; https://doi.org/10.1038/nchem.1574.Search in Google Scholar PubMed
34. Parker, D. H., Bartram, M. E., Koel, B. E. Surf. Sci. 1989, 217, 489–510; https://doi.org/10.1016/0039-6028(89)90443-3.Search in Google Scholar
35. Weaver, J. F., Chen, J.-J., Gerrard, A. L. Surf. Sci. 2005, 592, 83–103; https://doi.org/10.1016/j.susc.2005.07.010.Search in Google Scholar
36. Walker, M., Parkinson, C. R., Draxler, M., Brown, M. G., McConville, C. F. Surf. Sci. 2006, 600, 3327–3336; https://doi.org/10.1016/j.susc.2006.06.034.Search in Google Scholar
37. Devarajan, S. P., Hinojosa, J. A., Weaver, J. F. Surf. Sci. 2008, 602, 3116–3124; https://doi.org/10.1016/j.susc.2008.08.008.Search in Google Scholar
38. Hawkins, J. M., Weaver, J. F., Asthagiri, A. Phys. Rev. B 2009, 79, 125434; https://doi.org/10.1103/physrevb.79.125434.Search in Google Scholar
39. Krekelberg, W. P., Greeley, J., Mavrikakis, M. J. Phys. Chem. B 2004, 108, 987–994; https://doi.org/10.1021/jp035786c.Search in Google Scholar
40. Gao, H., Xiong, Y., Liu, X., Zhao, D., Feng, Y., Wang, L., Wang, J. Appl. Surf. Sci. 2016, 389, 211–215; https://doi.org/10.1016/j.apsusc.2016.06.185.Search in Google Scholar
41. Gambardella, P., Šljivančanin, Ž., Hammer, B., Blanc, M., Kuhnke, K., Kern, K. Phys. Rev. Lett. 2001, 87(4), 056103; https://doi.org/10.1103/physrevlett.87.056103.Search in Google Scholar PubMed
42. Carlisle, C. I., Fujimoto, T., Sim, W. S., King, D. A. Surf. Sci. 2000, 470, 15–31; https://doi.org/10.1016/s0039-6028(00)00831-1.Search in Google Scholar
43. Muller, O., Roy, R. J. Less-Common Met. 1968, 16, 129–146; https://doi.org/10.1016/0022-5088(68)90070-2.Search in Google Scholar
44. Fernandez, M. P. H., Chamberland, B. L. J. Less-Common Met. 1984, 99, 99–105; https://doi.org/10.1016/0022-5088(84)90338-2.Search in Google Scholar
45. Hurtado, I., Neuschütz, D., Eds. Landolt-Börnstein Thermodynamic Properties of Inorganic Materials Group IV; Springer: Berlin, Heidelberg, Vol. 19, 1999.Search in Google Scholar
46. He, Y. B., Stierle, A., Li, W. X., Farkas, A., Kasper, N., Over, H. J. Phys. Chem. C 2008, 112, 11946–11953; https://doi.org/10.1021/jp803607y.Search in Google Scholar
47. Todorova, M., Li, W. X., Ganduglia-Pirovano, M. V., Stampfl, C., Reuter, K., Scheffler, M. Phys. Rev. Lett. 2002, 89(4), 096103; https://doi.org/10.1103/physrevlett.89.096103.Search in Google Scholar
48. Conrad, H., Ertl, G., Küppers, J., Latta, E. E. Surf. Sci. 1977, 65, 245–260; https://doi.org/10.1016/0039-6028(77)90305-3.Search in Google Scholar
49. Ganduglia-Pirovano, M. V., Reuter, K., Scheffler, M. Phys. Rev. B 2002, 65, 245426; https://doi.org/10.1103/physrevb.65.245426.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2023-0087).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification