Home Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
Article
Licensed
Unlicensed Requires Authentication

Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs

  • Maximilian Kai Reimann , Jutta Kösters and Rainer Pöttgen EMAIL logo
Published/Copyright: April 5, 2024
Become an author with De Gruyter Brill

Abstract

The ternary auride Ba3Mg4Au4 was synthesized from the elements in a sealed tantalum ampoule. The Ba3Mg4Au4 structure was refined from single-crystal X-ray diffractometer data: Gd3Cu4Ge4 type, space group Immm, a = 447.95(10), b = 843.07(18), c = 1564.2(5) pm, wR2 = 0.0935, 680 F2 values, 23 variables. Ba3Mg4Au4 is a 1:2 intergrowth structure of BaAu2-(AlB2 type) and BaMg2Au-(MgCuAl2 type) related slabs. The two crystallographically independent gold atoms both have tricapped trigonal prismatic coordination, i.e. Au1@Mg6Ba3 and Au2@Mg2Ba6Au. The Au–Mg (284–303 pm) and Ba–Au (331–349 pm) distances cover small ranges that are close to the sums of the covalent radii. The magnesium atoms in the MgCuAl2-related slab show Mg–Mg distances of 320–332 pm. The different coloring variants of the Gd3Cu4Ge4 type are briefly discussed.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rodewald, U.C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720; https://doi.org/10.1016/j.jssc.2007.03.007.Search in Google Scholar

2. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park: Ohio, USA, 2022.Search in Google Scholar

3. Kalychak, Ya. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth-transition metal-indides. In Handbook on the Physics and Chemistry of Rare Earths; GschneiderJr.K. A., Pecharsky, V. K., Bünzli, J.-C., Eds.; Elsevier: Amsterdam, Vol. 34, 2005, pp. 1–133. Chapter 218.10.1016/S0168-1273(04)34001-8Search in Google Scholar

4. Skolozdra, R. V. Stannides of the rare-earth and transition metals. In Handbook on the Physics and Chemistry of Rare Earths; GschneidnerJr.K. A., Eyring, L., Eds.; Elsevier: Amsterdam, Vol. 24, 1997, pp. 399–517. Chapter 164.10.1016/S0168-1273(97)24009-2Search in Google Scholar

5. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Search in Google Scholar

6. Pöttgen, R., Hoffmann, R.-D. Metall 2004, 58, 557.10.1093/fs/58.4.557Search in Google Scholar

7. Cirafici, S., Palenzona, A., Canepa, F. J. Less-Common Met. 1985, 107, 179; https://doi.org/10.1016/0022-5088(85)90253-x.Search in Google Scholar

8. Fornasini, M. L., Merlo, F., Napoletano, M., Pani, M. J. Phase Equilib. 2002, 23, 57; https://doi.org/10.1361/105497102770332216.Search in Google Scholar

9. Hoffmann, R.-D., Pöttgen, R., Landrum, G. A., Dronskowski, R., Künnen, B., Kotzyba, G. Z. Anorg. Allg. Chem. 1999, 625, 789.10.1002/(SICI)1521-3749(199905)625:5<789::AID-ZAAC789>3.0.CO;2-QSearch in Google Scholar

10. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707; https://doi.org/10.1002/zaac.201200538.Search in Google Scholar

11. Kersting, M., Matar, S. F., Schwickert, C., Pöttgen, R. Z. Naturforsch. 2012, 67b, 61; https://doi.org/10.1515/znb-2012-0111.Search in Google Scholar

12. Zaremba, R., Rodewald, U.Ch., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2007, 138, 523; https://doi.org/10.1007/s00706-007-0663-9.Search in Google Scholar

13. Pöttgen, R. The Gd4RhIn type: crystal chemistry and properties. In Handbook on the Physics and Chemistry of Rare Earths; Pecharsky, V. K., Bünzli, J.-C., Eds.; Elsevier: North-Holland, Amsterdam, Vol. 58, 2020, pp. 1–38. Chapter 315.10.1016/bs.hpcre.2020.09.001Search in Google Scholar

14. Reimann, M. K., Pöttgen, R. Z. Kristallogr. 2022, 237, 57.Search in Google Scholar

15. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Search in Google Scholar

16. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

17. Palatinus, L. Acta Crystallogr. 2013, B69, 1; https://doi.org/10.1107/s0108768112051361.Search in Google Scholar PubMed

18. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

19. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

20. Reimann, M. K. Synthese, Strukturchemie und physikalische Eigenschaften ternärer intermetallischer Magnesiumverbindungen. Dissertation, Universität Münster, Münster, 2023.Search in Google Scholar

21. Perlitz, H., Westgren, A. Ark. Kemi, Mineral. Geol. B 1943, 16, 1.Search in Google Scholar

22. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491; https://doi.org/10.1515/znb-2005-0502.Search in Google Scholar

23. Bruzzone, G., Bonino, G. B. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 1970, 48, 235.Search in Google Scholar

24. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

25. Pöttgen, R., Hoffmann, R.-D., Renger, J., Rodewald, U. Ch., Möller, M. H. Z. Anorg. Allg. Chem. 2000, 626, 2257.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Search in Google Scholar

26. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

27. Shannon, R. D. Acta Crystallogr. 1976, A32, 751; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

28. Schmidbaur, H., Ed. Gold: Chemistry, Biochemistry and Technology; John Wiley & Sons LTD: Chichester, England, 1999.Search in Google Scholar

29. Jansen, M. Solid State Sci. 2005, 7, 1464; https://doi.org/10.1016/j.solidstatesciences.2005.06.015.Search in Google Scholar

30. Jansen, M. Chem. Soc. Rev. 2008, 37, 1826; https://doi.org/10.1039/b708844m.Search in Google Scholar PubMed

31. Rieger, W. Monatsh. Chem. 1970, 101, 449; https://doi.org/10.1007/bf00910230.Search in Google Scholar

32. Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A., Tomkowicz, Z. Solid State Commun. 2003, 126, 527; https://doi.org/10.1016/s0038-1098(03)00184-4.Search in Google Scholar

33. Sprenger, H. J. Less-Common Met. 1974, 34, 39; https://doi.org/10.1016/0022-5088(74)90215-x.Search in Google Scholar

34. Nagata, Y., Sodeyama, K., Yashiro, S., Sasaki, H., Samata, H., Uchida, T., Lan, M. D. J. Alloys Compd. 1998, 281, 112; https://doi.org/10.1016/s0925-8388(98)00780-4.Search in Google Scholar

35. Guo, S.-P., You, T.-S., Bobev, S. Inorg. Chem. 2012, 51, 3119; https://doi.org/10.1021/ic202591j.Search in Google Scholar PubMed

36. Suen, N.-T., Guo, S.-P., Hoos, J., Bobev, S. Inorg. Chem. 2018, 57, 5632; https://doi.org/10.1021/acs.inorgchem.8b00583.Search in Google Scholar PubMed

37. Allescher-Last, H., Schuster, H.-U. Z. Naturforsch. 1993, 48b, 240; https://doi.org/10.1515/znb-1993-0221.Search in Google Scholar

38. Skolozdra, R. V., Komarovskaya, L. P., Akselrud, L. G. Ukr. Fiz. Zh. Russ. Ed. 1984, 29, 1395.Search in Google Scholar

39. Monconduit, L., Belin, C. Acta Crystallogr. C 1999, 55, 1199; https://doi.org/10.1107/s0108270199006927.Search in Google Scholar

40. Schäfer, M. C., Suen, N. T., Bobev, S. Dalton Trans. 2014, 43, 16889; https://doi.org/10.1039/c4dt02220c.Search in Google Scholar PubMed

41. Mishra, T., Schwickert, C., Pöttgen, R. Monatsh. Chem. 2011, 142, 973; https://doi.org/10.1007/s00706-011-0569-4.Search in Google Scholar

Received: 2023-05-05
Accepted: 2023-06-12
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Editorial
  4. Thomas Bredow zum 60. Geburtstag gewidmet
  5. Research Articles
  6. Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
  7. Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
  8. Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
  9. Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl featuring the small [V6IVAs8IIIO26]4– cluster anion
  10. Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
  11. mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
  12. A molecular mechanics implementation of the cyclic cluster model
  13. A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
  14. Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
  15. Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
  16. High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
  17. Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
  18. Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19
  19. From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
  20. A Hybrid Monte Carlo study of argon solidification
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0033/html?lang=en
Scroll to top button