Home Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
Article
Licensed
Unlicensed Requires Authentication

Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence

  • Stefan Seidel , Thomas Harmening , Jutta Kösters , Aylin Koldemir , Wilma Pröbsting , Simon Engelbert and Rainer Pöttgen EMAIL logo
Published/Copyright: March 30, 2023
Become an author with De Gruyter Brill

Abstract

The silicide Eu2Ru3Si5 was synthesized from the elements in a sealed tantalum tube in a high-frequency furnace, while the gallide Eu2Ir3Ga5 was obtained by arc-melting. Both structures were refined from single-crystal X-ray diffractometer data: P4/mnc, a = 1072.69(8), c = 569.55(5) pm, wR = 0.0453, 617 F2 values, 31 variables for Eu2Ru3Si5 and a = 1122.18(7), c = 583.17(4) pm, wR = 0.0546, 729 F2 values, 31 variables for Eu2Ir3Ga4.95(1). The gallide shows small defects on one 8h site. The transition metal atoms in Eu2Ru3Si5 and Eu2Ir3Ga5 have octahedral p element coordination. These Ru@Si6 respectively Ir@Ga6 polyhedra are condensed to three-dimensional [Ru3Si5]6− respectively [Ir3Ga5]4− polyanionic networks. The ground states of Eu(III) in Eu2Ru3Si5 and Eu(II) in Eu2Ir3Ga5 were determined by 151Eu Mössbauer spectroscopy.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collections.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yarmolyuk, Ya. P., Aksel’rud, L. G., Gladyshevskii, E. I. Kristallografiya 1977, 22, 627–629.Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

3. Bugaris, D. E., Malliakas, C. D., Han, F., Calta, N. P., Sturza, M., Krogstad, M. J., Osborn, R., Rosenkranz, S., Ruff, J. P. C., Trimarchi, G., Bud’ko, S. L., Balasubramanian, M., Chung, D. Y., Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 4130–4143; https://doi.org/10.1021/jacs.7b00284.Search in Google Scholar PubMed

4. Myakush, O. R., Fedorchuk, A. A., Oleksyn, O. Ya., Schollmeyer, D. Kristallografiya 1999, 44, 822–823.10.1097/00006123-199904000-00074Search in Google Scholar

5. Myakush, O., Fedorchuk, A. Visn. Lviv. Derzh. Univ., Ser. Khim. 2001, 40, 32–35.Search in Google Scholar

6. Jeitschko, W., Schlüter, M. Z. Anorg. Allg. Chem. 2010, 636, 1100–1105; https://doi.org/10.1002/zaac.200900530.Search in Google Scholar

7. Wastin, F., Rebizant, J., Sanchez, J. P., Blaise, A., Goffart, J., Spirlet, J. C., Walker, C. T., Fuger, J. J. Alloys Compd. 1994, 210, 83–89; https://doi.org/10.1016/0925-8388(94)90119-8.Search in Google Scholar

8. Leithe-Jasper, A., Rogl, P., Potter, P. E. J. Nucl. Mater. 1996, 230, 302–305; https://doi.org/10.1016/0022-3115(96)00125-0.Search in Google Scholar

9. Braun, H. F. Phys. Lett. A 1980, 75, 386–388; https://doi.org/10.1016/0375-9601(80)90849-x.Search in Google Scholar

10. Umarji, A. M., Malik, S. K., Shenoy, G. K. J. Appl. Phys. 1985, 57, 3118–3120; https://doi.org/10.1063/1.335177.Search in Google Scholar

11. Mielke, A., Kim, W. W., Rieger, J. J., Fraunberger, G., Scheidt, E.-W., Stewart, G. R. Phys. Rev. B 1994, 50, 16522–16527; https://doi.org/10.1103/physrevb.50.16522.Search in Google Scholar PubMed

12. Muro, Y., Wada, T., Fukuhara, T., Kuwa, T. JPS Conf. Proc. 2014, 3, 011004.Search in Google Scholar

13. Méot-Meyer, M., Venturini, G., Malaman, B., Mc Rae, E., Roques, B. Mater. Res. Bull. 1985, 20, 1009–1014; https://doi.org/10.1016/0025-5408(85)90198-9.Search in Google Scholar

14. Nirmala, R., Sankaranarayanan, V., Sethupathi, K., Morozkin, A. V., Chu, Z., Yelon, W. B., Malik, S. K., Yamamoto, Y., Hori, H. J. Alloys Compd. 2002, 347, 9–13; https://doi.org/10.1016/s0925-8388(02)00679-5.Search in Google Scholar

15. Moodenbaugh, A. R., Cox, D. E., Braun, H. F. Phys. Rev. B 1982, 25, 4702–4710; https://doi.org/10.1103/physrevb.25.4702.Search in Google Scholar

16. Moodenbaugh, A. R., Cox, D. E., Vining, C. B., Segre, C. U. Phys. Rev. B 1984, 29, 271–277; https://doi.org/10.1103/physrevb.29.271.Search in Google Scholar

17. Moodenbaugh, A. R., Cox, D. E., Vining, C. B. Phys. Rev. B 1985, 32, 3103–3106; https://doi.org/10.1103/physrevb.32.3103.Search in Google Scholar PubMed

18. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

19. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Search in Google Scholar

20. Sichevych, O., Prots, Yu., Schnelle, W., Schmidt, M., Grin, Yu. Z. Kristallogr. NCS 2006, 221, 263–264; https://doi.org/10.1524/ncrs.2006.0066.Search in Google Scholar

21. Sichevych, O., Schnelle, W., Prots, Yu., Burkhardt, U., Grin, Yu. Z. Naturforsch. 2006, 61b, 904–911.10.1515/znb-2006-0719Search in Google Scholar

22. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

23. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed

24. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

25. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

26. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

27. Brand, R. A. WinNormos for Igor6 (Version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

28. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar

29. Bodak, O. I., Kotur, B. Ya., Yarovets, V. I., Gladyshevskii, E. I. Kristallografiya 1977, 22, 385–388.Search in Google Scholar

30. Paccard, D., Paccard, L. J. Less-Common Met. 1990, 163, L13–L17; https://doi.org/10.1016/0022-5088(90)90606-k.Search in Google Scholar

31. Morozkin, A. V., Seropegin, Yu. D. J. Alloys Compd. 1996, 237, 124–138; https://doi.org/10.1016/0925-8388(95)02055-1.Search in Google Scholar

32. Morozkin, A. V., Sviridov, I. A. J. Alloys Compd. 2000, 296. L4–L5.10.1016/S0925-8388(99)00516-2Search in Google Scholar

33. Salamakha, P., Sologub, O., Bocelli, G., Righi, L. J. Alloys Compd. 2000, 299. L6–L8; https://doi.org/10.1016/s0925-8388(99)00690-8.Search in Google Scholar

34. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

35. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

36. Seidel, S., Schubert, L., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2015, 641, 1749–1754; https://doi.org/10.1002/zaac.201500221.Search in Google Scholar

37. Rizzoli, C., Sologub, O. L., Salamakha, P. S. J. Alloys Compd. 2002, 337. L4–L7; https://doi.org/10.1016/s0925-8388(01)01937-5.Search in Google Scholar

38. Chabot, B. J. Less-Common Met. 1984, 102, L23–L25; https://doi.org/10.1016/0022-5088(84)90404-1.Search in Google Scholar

39. Felner, I., Nowik, I. J. Phys. Chem. Solids 1984, 45, 419–426; https://doi.org/10.1016/0022-3697(84)90149-5.Search in Google Scholar

40. Grandjean, F., Long, G. J. Mössbauer spectroscopy of europium-containing compounds. In Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry; Long, G. J., Grandjean, F., Eds. Springer: Boston, MA, Vol. 3, 1989; pp. 513–597.10.1007/978-1-4899-2289-2_11Search in Google Scholar

41. Harmening, T., Pöttgen, R. Z. Naturforsch. 2010, 65b, 90–94.10.1515/znb-2010-0116Search in Google Scholar

42. Stegemann, F., Block, T., Klenner, S., Janka, O. Chem. Eur J. 2019, 25, 3505–3509; https://doi.org/10.1002/chem.201806297.Search in Google Scholar PubMed

43. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133–1140; https://doi.org/10.1039/b100055l.Search in Google Scholar

44. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174–180; https://doi.org/10.1006/jssc.1998.7750.Search in Google Scholar

45. Pöttgen, R., Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar

46. De Vries, J. W. C., Thiel, R. C., Buschow, K. H. J. Physica B 1984, 124, 291–298; https://doi.org/10.1016/0378-4363(84)90088-3.Search in Google Scholar

47. Maślankiewicz, P., Szade, J. J. Alloys Compd. 2006, 423, 69–73; https://doi.org/10.1016/j.jallcom.2005.12.045.Search in Google Scholar

48. Seiro, S., Kummer, K., Vyalikh, D., Caroca-Canales, N., Geibel, C. Phys. Status Solidi B 2013, 250, 621–625; https://doi.org/10.1002/pssb.201200892.Search in Google Scholar

49. Mayer, I., Felner, I. J. Phys. Chem. Solids 1977, 38, 1031–1034; https://doi.org/10.1016/0022-3697(77)90206-2.Search in Google Scholar

50. Hesse, H.-J., Wortmann, G. Hyperfine Interact. 1994, 93, 1499–1504; https://doi.org/10.1007/bf02072899.Search in Google Scholar

51. Mörsen, E., Mosel, B. D., Müller-Warmuth, W., Reehuis, M., Jeitschko, W. J. Phys. C: Solid State Phys. 1988, 21, 3133–3140; https://doi.org/10.1088/0022-3719/21/16/023.Search in Google Scholar

52. Hermes, W., Harmening, T., Pöttgen, R. Chem. Mater. 2009, 21, 3325–3331; https://doi.org/10.1021/cm900841t.Search in Google Scholar

53. Stein, S., Heletta, L., Block, T., Gerke, B., Pöttgen, R. Solid State Sci. 2017, 67, 64–67.10.1016/j.solidstatesciences.2017.03.006Search in Google Scholar

54. Pöttgen, R., Hoffmann, R.-D., Möller, M. H., Kotzyba, G., Künnen, B., Rosenhahn, C., Mosel, B. D. J. Solid State Chem. 1999, 145, 174–181; https://doi.org/10.1006/jssc.1999.8236.Search in Google Scholar

55. Engel, S., Gießelmann, E., Pöttgen, R., Janka, O. Rev. Inorg. Chem. 2023, 43, https://doi.org/10.1515/REVIC-2023-0003, in press.Search in Google Scholar

Received: 2023-03-02
Accepted: 2023-03-11
Published Online: 2023-03-30
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0009/html?lang=en
Scroll to top button