Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
-
Stefan Seidel
Abstract
The silicide Eu2Ru3Si5 was synthesized from the elements in a sealed tantalum tube in a high-frequency furnace, while the gallide Eu2Ir3Ga5 was obtained by arc-melting. Both structures were refined from single-crystal X-ray diffractometer data: P4/mnc, a = 1072.69(8), c = 569.55(5) pm, wR = 0.0453, 617 F2 values, 31 variables for Eu2Ru3Si5 and a = 1122.18(7), c = 583.17(4) pm, wR = 0.0546, 729 F2 values, 31 variables for Eu2Ir3Ga4.95(1). The gallide shows small defects on one 8h site. The transition metal atoms in Eu2Ru3Si5 and Eu2Ir3Ga5 have octahedral p element coordination. These Ru@Si6 respectively Ir@Ga6 polyhedra are condensed to three-dimensional [Ru3Si5]6− respectively [Ir3Ga5]4− polyanionic networks. The ground states of Eu(III) in Eu2Ru3Si5 and Eu(II) in Eu2Ir3Ga5 were determined by 151Eu Mössbauer spectroscopy.
Acknowledgements
We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collections.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Yarmolyuk, Ya. P., Aksel’rud, L. G., Gladyshevskii, E. I. Kristallografiya 1977, 22, 627–629.Search in Google Scholar
2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar
3. Bugaris, D. E., Malliakas, C. D., Han, F., Calta, N. P., Sturza, M., Krogstad, M. J., Osborn, R., Rosenkranz, S., Ruff, J. P. C., Trimarchi, G., Bud’ko, S. L., Balasubramanian, M., Chung, D. Y., Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 4130–4143; https://doi.org/10.1021/jacs.7b00284.Search in Google Scholar PubMed
4. Myakush, O. R., Fedorchuk, A. A., Oleksyn, O. Ya., Schollmeyer, D. Kristallografiya 1999, 44, 822–823.10.1097/00006123-199904000-00074Search in Google Scholar
5. Myakush, O., Fedorchuk, A. Visn. Lviv. Derzh. Univ., Ser. Khim. 2001, 40, 32–35.Search in Google Scholar
6. Jeitschko, W., Schlüter, M. Z. Anorg. Allg. Chem. 2010, 636, 1100–1105; https://doi.org/10.1002/zaac.200900530.Search in Google Scholar
7. Wastin, F., Rebizant, J., Sanchez, J. P., Blaise, A., Goffart, J., Spirlet, J. C., Walker, C. T., Fuger, J. J. Alloys Compd. 1994, 210, 83–89; https://doi.org/10.1016/0925-8388(94)90119-8.Search in Google Scholar
8. Leithe-Jasper, A., Rogl, P., Potter, P. E. J. Nucl. Mater. 1996, 230, 302–305; https://doi.org/10.1016/0022-3115(96)00125-0.Search in Google Scholar
9. Braun, H. F. Phys. Lett. A 1980, 75, 386–388; https://doi.org/10.1016/0375-9601(80)90849-x.Search in Google Scholar
10. Umarji, A. M., Malik, S. K., Shenoy, G. K. J. Appl. Phys. 1985, 57, 3118–3120; https://doi.org/10.1063/1.335177.Search in Google Scholar
11. Mielke, A., Kim, W. W., Rieger, J. J., Fraunberger, G., Scheidt, E.-W., Stewart, G. R. Phys. Rev. B 1994, 50, 16522–16527; https://doi.org/10.1103/physrevb.50.16522.Search in Google Scholar PubMed
12. Muro, Y., Wada, T., Fukuhara, T., Kuwa, T. JPS Conf. Proc. 2014, 3, 011004.Search in Google Scholar
13. Méot-Meyer, M., Venturini, G., Malaman, B., Mc Rae, E., Roques, B. Mater. Res. Bull. 1985, 20, 1009–1014; https://doi.org/10.1016/0025-5408(85)90198-9.Search in Google Scholar
14. Nirmala, R., Sankaranarayanan, V., Sethupathi, K., Morozkin, A. V., Chu, Z., Yelon, W. B., Malik, S. K., Yamamoto, Y., Hori, H. J. Alloys Compd. 2002, 347, 9–13; https://doi.org/10.1016/s0925-8388(02)00679-5.Search in Google Scholar
15. Moodenbaugh, A. R., Cox, D. E., Braun, H. F. Phys. Rev. B 1982, 25, 4702–4710; https://doi.org/10.1103/physrevb.25.4702.Search in Google Scholar
16. Moodenbaugh, A. R., Cox, D. E., Vining, C. B., Segre, C. U. Phys. Rev. B 1984, 29, 271–277; https://doi.org/10.1103/physrevb.29.271.Search in Google Scholar
17. Moodenbaugh, A. R., Cox, D. E., Vining, C. B. Phys. Rev. B 1985, 32, 3103–3106; https://doi.org/10.1103/physrevb.32.3103.Search in Google Scholar PubMed
18. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
19. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Search in Google Scholar
20. Sichevych, O., Prots, Yu., Schnelle, W., Schmidt, M., Grin, Yu. Z. Kristallogr. NCS 2006, 221, 263–264; https://doi.org/10.1524/ncrs.2006.0066.Search in Google Scholar
21. Sichevych, O., Schnelle, W., Prots, Yu., Burkhardt, U., Grin, Yu. Z. Naturforsch. 2006, 61b, 904–911.10.1515/znb-2006-0719Search in Google Scholar
22. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
23. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed
24. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
25. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar
26. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar
27. Brand, R. A. WinNormos for Igor6 (Version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar
28. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar
29. Bodak, O. I., Kotur, B. Ya., Yarovets, V. I., Gladyshevskii, E. I. Kristallografiya 1977, 22, 385–388.Search in Google Scholar
30. Paccard, D., Paccard, L. J. Less-Common Met. 1990, 163, L13–L17; https://doi.org/10.1016/0022-5088(90)90606-k.Search in Google Scholar
31. Morozkin, A. V., Seropegin, Yu. D. J. Alloys Compd. 1996, 237, 124–138; https://doi.org/10.1016/0925-8388(95)02055-1.Search in Google Scholar
32. Morozkin, A. V., Sviridov, I. A. J. Alloys Compd. 2000, 296. L4–L5.10.1016/S0925-8388(99)00516-2Search in Google Scholar
33. Salamakha, P., Sologub, O., Bocelli, G., Righi, L. J. Alloys Compd. 2000, 299. L6–L8; https://doi.org/10.1016/s0925-8388(99)00690-8.Search in Google Scholar
34. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
35. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
36. Seidel, S., Schubert, L., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2015, 641, 1749–1754; https://doi.org/10.1002/zaac.201500221.Search in Google Scholar
37. Rizzoli, C., Sologub, O. L., Salamakha, P. S. J. Alloys Compd. 2002, 337. L4–L7; https://doi.org/10.1016/s0925-8388(01)01937-5.Search in Google Scholar
38. Chabot, B. J. Less-Common Met. 1984, 102, L23–L25; https://doi.org/10.1016/0022-5088(84)90404-1.Search in Google Scholar
39. Felner, I., Nowik, I. J. Phys. Chem. Solids 1984, 45, 419–426; https://doi.org/10.1016/0022-3697(84)90149-5.Search in Google Scholar
40. Grandjean, F., Long, G. J. Mössbauer spectroscopy of europium-containing compounds. In Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry; Long, G. J., Grandjean, F., Eds. Springer: Boston, MA, Vol. 3, 1989; pp. 513–597.10.1007/978-1-4899-2289-2_11Search in Google Scholar
41. Harmening, T., Pöttgen, R. Z. Naturforsch. 2010, 65b, 90–94.10.1515/znb-2010-0116Search in Google Scholar
42. Stegemann, F., Block, T., Klenner, S., Janka, O. Chem. Eur J. 2019, 25, 3505–3509; https://doi.org/10.1002/chem.201806297.Search in Google Scholar PubMed
43. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133–1140; https://doi.org/10.1039/b100055l.Search in Google Scholar
44. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174–180; https://doi.org/10.1006/jssc.1998.7750.Search in Google Scholar
45. Pöttgen, R., Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar
46. De Vries, J. W. C., Thiel, R. C., Buschow, K. H. J. Physica B 1984, 124, 291–298; https://doi.org/10.1016/0378-4363(84)90088-3.Search in Google Scholar
47. Maślankiewicz, P., Szade, J. J. Alloys Compd. 2006, 423, 69–73; https://doi.org/10.1016/j.jallcom.2005.12.045.Search in Google Scholar
48. Seiro, S., Kummer, K., Vyalikh, D., Caroca-Canales, N., Geibel, C. Phys. Status Solidi B 2013, 250, 621–625; https://doi.org/10.1002/pssb.201200892.Search in Google Scholar
49. Mayer, I., Felner, I. J. Phys. Chem. Solids 1977, 38, 1031–1034; https://doi.org/10.1016/0022-3697(77)90206-2.Search in Google Scholar
50. Hesse, H.-J., Wortmann, G. Hyperfine Interact. 1994, 93, 1499–1504; https://doi.org/10.1007/bf02072899.Search in Google Scholar
51. Mörsen, E., Mosel, B. D., Müller-Warmuth, W., Reehuis, M., Jeitschko, W. J. Phys. C: Solid State Phys. 1988, 21, 3133–3140; https://doi.org/10.1088/0022-3719/21/16/023.Search in Google Scholar
52. Hermes, W., Harmening, T., Pöttgen, R. Chem. Mater. 2009, 21, 3325–3331; https://doi.org/10.1021/cm900841t.Search in Google Scholar
53. Stein, S., Heletta, L., Block, T., Gerke, B., Pöttgen, R. Solid State Sci. 2017, 67, 64–67.10.1016/j.solidstatesciences.2017.03.006Search in Google Scholar
54. Pöttgen, R., Hoffmann, R.-D., Möller, M. H., Kotzyba, G., Künnen, B., Rosenhahn, C., Mosel, B. D. J. Solid State Chem. 1999, 145, 174–181; https://doi.org/10.1006/jssc.1999.8236.Search in Google Scholar
55. Engel, S., Gießelmann, E., Pöttgen, R., Janka, O. Rev. Inorg. Chem. 2023, 43, https://doi.org/10.1515/REVIC-2023-0003, in press.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions