Abstract
Many Laves phases take up considerable amounts of hydrogen to form metallic Laves phase hydrides. They frequently undergo phase transitions driven by ordering phenomena for the hydrogen atom distribution. The cubic Laves phase ZrCr2 takes up hydrogen to form a hydride with almost four hydrogen atoms per formula unit, which undergoes a phase transition to a monoclinic modification at a critical temperature Tc = 250.2 K. Its crystal structure was refined based on neutron powder diffraction data on the deuteride (ZrCr2D3.8 type [T = 1.6 K, C2/c]) at four temperatures in the range 50 K ≤ T ≤ 200 K. The monoclinic low-temperature modification features a strongly distorted square anti-prism ZrD8 and three CrD4 polyhedra with almost fully occupied deuterium sites in saddle-like, distorted tetrahedral and planar configurations. Zr–D distances are in the range 201.4(7) pm ≤ d(Zr–D) ≤ 208.5(8) pm and Cr–D distances in the range 172.9(7) pm ≤ d(Cr–D) ≤ 182.4(8) pm.
Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.
Acknowledgments
We acknowledge the Institut-Laue Langevin for provision of beamtime at the powder diffractometer D1A and Dr. François Fauth for help with the diffraction experiment.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shaltiel, D., Jacob, I., Davidov, D. J. Less Common. Met. 1977, 53, 117–131; https://doi.org/10.1016/0022-5088(77)90162-x.Search in Google Scholar
2. Shaltiel, D. J. Less Common. Met. 1978, 62, 407–416; https://doi.org/10.1016/0022-5088(78)90055-3.Search in Google Scholar
3. Shoemaker, D. P., Shoemaker, C. B. J. Less Common. Met. 1979, 68, 43–58; https://doi.org/10.1016/0022-5088(79)90271-6.Search in Google Scholar
4. Yvon, K., Fischer, P. Top. Appl. Phys. 1988, 63, 87–138; https://doi.org/10.1007/3540183337_11.Search in Google Scholar
5. Moriwaki, Y., Gamo, T., Seri, H., Iwaki, T. J. Less Common. Met. 1991, 172–174, 1211–1218; https://doi.org/10.1016/s0022-5088(06)80029-9.Search in Google Scholar
6. Hong, K. J. Alloys Compd. 2001, 321, 307–313; https://doi.org/10.1016/s0925-8388(01)00957-4.Search in Google Scholar
7. Kohlmann, H. Z. Kristallogr. 2020, 235, 319–332; https://doi.org/10.1515/zkri-2020-0043.Search in Google Scholar
8. Kohlmann, H., Fauth, F., Yvon, K. J. Alloys Compd. 1999, 285, 204–211; https://doi.org/10.1016/s0925-8388(99)00027-4.Search in Google Scholar
9. Ting, V. P., Henry, P. F., Kohlmann, H., Wilson, C. C., Weller, M. T. Phys. Chem. Chem. Phys. 2010, 12, 2083–2088; https://doi.org/10.1039/b914135a.Search in Google Scholar PubMed
10. Weller, M. T., Henry, P. F., Ting, V. P., Wilson, C. C. Chem. Commun.(Cambridge, U.K.) 2009, 2973–2989; https://doi.org/10.1039/B821336D.Search in Google Scholar
11. Bonhomme, F., Yvon, K., Zolliker, M. J. Alloys Compd. 1993, 199, 129–132; https://doi.org/10.1016/0925-8388(93)90438-s.Search in Google Scholar
12. Gingl, F., Yvon, K., Zavaliy, I. Yu., Yartys, V. A., Fischer, P. J. Alloys Compd. 1995, 226, 1–4; https://doi.org/10.1016/0925-8388(95)01589-2.Search in Google Scholar
13. Černý, R., Bonhomme, F., Yvon, K., Fischer, P., Zolliker, P., Cox, D. E., Hewat, A. J. Alloys Compd. 1992, 187, 233–241.10.1016/0925-8388(92)90537-JSearch in Google Scholar
14. Černý, R., Joubert, J.-M., Kohlmann, H., Yvon, K. J. Alloys Compd. 2002, 340, 180–188; https://doi.org/10.1016/S0925-8388(02)00050-6.Search in Google Scholar
15. Zolliker, P., Yvon, K., Jorgensen, J. D., Rotella, F. J. Inorg. Chem. 1986, 25, 3590–3593; https://doi.org/10.1021/ic00240a012.Search in Google Scholar
16. Olofsson-Martenson, M., Kritikos, M., Noreus, D. J. Am. Chem. Soc. 1999, 121, 10908–10912; https://doi.org/10.1021/ja991047r.Search in Google Scholar
17. Bronger, W., Müller, P., Schmitz, D., Spittank, H. Z. Anorg. Allg. Chem. 1984, 516, 35–41; https://doi.org/10.1002/zaac.19845160906.Search in Google Scholar
18. Irodova, A. V., Glazkov, V. P., Somenko, V. A., Shil’stein, S. Sh. Sov. Phys. Solid State 1980, 22, 45–50.Search in Google Scholar
19. Kohlmann, H., Yvon, K. J. Alloys Compd. 2000, 309, 123–126; https://doi.org/10.1016/s0925-8388(00)01040-9.Search in Google Scholar
20. Kohlmann, H., Fauth, F., Fischer, P., Skripov, A. V., Yvon, K. J. Alloys Compd. 2001, 327, L4–L9; https://doi.org/10.1016/s0925-8388(01)01565-1.Search in Google Scholar
21. Rodríguez-Carvajal, J. FullProf (version 5.30); Institut Laue-Langevin: Grenoble (France), 2012.Search in Google Scholar
22. Caglioti, G., Paoletti, A., Ricci, F. P. Nucl. Instrum. 1958, 3, 223–228; https://doi.org/10.1016/0369-643x(58)90029-X.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination