Home The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
Article
Licensed
Unlicensed Requires Authentication

The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K

  • Holger Kohlmann EMAIL logo
Published/Copyright: October 13, 2020
Become an author with De Gruyter Brill

Abstract

Many Laves phases take up considerable amounts of hydrogen to form metallic Laves phase hydrides. They frequently undergo phase transitions driven by ordering phenomena for the hydrogen atom distribution. The cubic Laves phase ZrCr2 takes up hydrogen to form a hydride with almost four hydrogen atoms per formula unit, which undergoes a phase transition to a monoclinic modification at a critical temperature Tc = 250.2 K. Its crystal structure was refined based on neutron powder diffraction data on the deuteride (ZrCr2D3.8 type [T = 1.6 K, C2/c]) at four temperatures in the range 50 K ≤ T ≤ 200 K. The monoclinic low-temperature modification features a strongly distorted square anti-prism ZrD8 and three CrD4 polyhedra with almost fully occupied deuterium sites in saddle-like, distorted tetrahedral and planar configurations. Zr–D distances are in the range 201.4(7) pm ≤ d(Zr–D) ≤ 208.5(8) pm and Cr–D distances in the range 172.9(7) pm ≤ d(Cr–D) ≤ 182.4(8) pm.


Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.



Corresponding author: Holger Kohlmann, Institut für Anorganische Chemie, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany, E-mail:

Acknowledgments

We acknowledge the Institut-Laue Langevin for provision of beamtime at the powder diffractometer D1A and Dr. François Fauth for help with the diffraction experiment.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shaltiel, D., Jacob, I., Davidov, D. J. Less Common. Met. 1977, 53, 117–131; https://doi.org/10.1016/0022-5088(77)90162-x.Search in Google Scholar

2. Shaltiel, D. J. Less Common. Met. 1978, 62, 407–416; https://doi.org/10.1016/0022-5088(78)90055-3.Search in Google Scholar

3. Shoemaker, D. P., Shoemaker, C. B. J. Less Common. Met. 1979, 68, 43–58; https://doi.org/10.1016/0022-5088(79)90271-6.Search in Google Scholar

4. Yvon, K., Fischer, P. Top. Appl. Phys. 1988, 63, 87–138; https://doi.org/10.1007/3540183337_11.Search in Google Scholar

5. Moriwaki, Y., Gamo, T., Seri, H., Iwaki, T. J. Less Common. Met. 1991, 172–174, 1211–1218; https://doi.org/10.1016/s0022-5088(06)80029-9.Search in Google Scholar

6. Hong, K. J. Alloys Compd. 2001, 321, 307–313; https://doi.org/10.1016/s0925-8388(01)00957-4.Search in Google Scholar

7. Kohlmann, H. Z. Kristallogr. 2020, 235, 319–332; https://doi.org/10.1515/zkri-2020-0043.Search in Google Scholar

8. Kohlmann, H., Fauth, F., Yvon, K. J. Alloys Compd. 1999, 285, 204–211; https://doi.org/10.1016/s0925-8388(99)00027-4.Search in Google Scholar

9. Ting, V. P., Henry, P. F., Kohlmann, H., Wilson, C. C., Weller, M. T. Phys. Chem. Chem. Phys. 2010, 12, 2083–2088; https://doi.org/10.1039/b914135a.Search in Google Scholar PubMed

10. Weller, M. T., Henry, P. F., Ting, V. P., Wilson, C. C. Chem. Commun.(Cambridge, U.K.) 2009, 2973–2989; https://doi.org/10.1039/B821336D.Search in Google Scholar

11. Bonhomme, F., Yvon, K., Zolliker, M. J. Alloys Compd. 1993, 199, 129–132; https://doi.org/10.1016/0925-8388(93)90438-s.Search in Google Scholar

12. Gingl, F., Yvon, K., Zavaliy, I. Yu., Yartys, V. A., Fischer, P. J. Alloys Compd. 1995, 226, 1–4; https://doi.org/10.1016/0925-8388(95)01589-2.Search in Google Scholar

13. Černý, R., Bonhomme, F., Yvon, K., Fischer, P., Zolliker, P., Cox, D. E., Hewat, A. J. Alloys Compd. 1992, 187, 233–241.10.1016/0925-8388(92)90537-JSearch in Google Scholar

14. Černý, R., Joubert, J.-M., Kohlmann, H., Yvon, K. J. Alloys Compd. 2002, 340, 180–188; https://doi.org/10.1016/S0925-8388(02)00050-6.Search in Google Scholar

15. Zolliker, P., Yvon, K., Jorgensen, J. D., Rotella, F. J. Inorg. Chem. 1986, 25, 3590–3593; https://doi.org/10.1021/ic00240a012.Search in Google Scholar

16. Olofsson-Martenson, M., Kritikos, M., Noreus, D. J. Am. Chem. Soc. 1999, 121, 10908–10912; https://doi.org/10.1021/ja991047r.Search in Google Scholar

17. Bronger, W., Müller, P., Schmitz, D., Spittank, H. Z. Anorg. Allg. Chem. 1984, 516, 35–41; https://doi.org/10.1002/zaac.19845160906.Search in Google Scholar

18. Irodova, A. V., Glazkov, V. P., Somenko, V. A., Shil’stein, S. Sh. Sov. Phys. Solid State 1980, 22, 45–50.Search in Google Scholar

19. Kohlmann, H., Yvon, K. J. Alloys Compd. 2000, 309, 123–126; https://doi.org/10.1016/s0925-8388(00)01040-9.Search in Google Scholar

20. Kohlmann, H., Fauth, F., Fischer, P., Skripov, A. V., Yvon, K. J. Alloys Compd. 2001, 327, L4–L9; https://doi.org/10.1016/s0925-8388(01)01565-1.Search in Google Scholar

21. Rodríguez-Carvajal, J. FullProf (version 5.30); Institut Laue-Langevin: Grenoble (France), 2012.Search in Google Scholar

22. Caglioti, G., Paoletti, A., Ricci, F. P. Nucl. Instrum. 1958, 3, 223–228; https://doi.org/10.1016/0369-643x(58)90029-X.Search in Google Scholar

Received: 2020-08-27
Accepted: 2020-09-18
Published Online: 2020-10-13
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0150/html?lang=en
Scroll to top button