Startseite On the limitations of the complex wave velocity for the heterogeneous swirling flows
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the limitations of the complex wave velocity for the heterogeneous swirling flows

  • Prakash Shanmugam ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. September 2023

Abstract

The hydrodynamic instability of variable density swirling flows under gravity between two infinite coaxial cylinders is investigated for axisymmetric disturbances. It is shown that the complex wave velocity of any arbitrary unstable axisymmetric mode must lie within the semi-elliptical region whose minor axis depends on the density stratification parameter J(r). The stabilizing effect of density stratification is shown by reducing the semi-circular instability region of [G. K. Batchelor and A. E. Gill, “Analysis of the stability of axisymmetric jets,” J. Fluid Mech., vol. 14, p. 529, 1962]. Furthermore, we have obtained two parabolic instability regions which intersect and reduce the semi-elliptical instability region for density-stratified flows. These parabolic instability regions are uniformly valid for both variable density and density homogeneous flows also.

MSC 2010: 76E05

Corresponding author: Prakash Shanmugam, Department of Mathematics, SAS, Vellore Institute of Technology - AP, Amaravathi, Andhra Pradesh, 522237 India, E-mail:

Acknowledgments

Author thank Prof. M. Subbiah for discussions which forms the basis of this work.

  1. Research ethics: Not applicable.

  2. Author contributions: Entire work is done by single author Prakash Shanmugam.

  3. Competing interests: Author declares that he has no conflict of interest in this work.

  4. Research funding: The author acknowledges with thanks to the Council of Scientific and Industrial Research (CSIR), India for financial support under the grant 09/559(0134)/2019-EMR-I.

  5. Data availability: No data is used in this research.

References

[1] G. K. Batchelor and A. E. Gill, “Analysis of the stability of axisymmetric jets,” J. Fluid Mech., vol. 14, p. 529, 1962, https://doi.org/10.1017/s0022112062001421.Suche in Google Scholar

[2] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Instability, Oxford, Clarendon Press, 1961.Suche in Google Scholar

[3] A. G. Walton, “Stability of circular PoiseuilleCouette flow to axisymmetric disturbances,” J. Fluid Mech., vol. 500, p. 169, 2004, https://doi.org/10.1017/s0022112003007158.Suche in Google Scholar

[4] L. Rayleigh, “On the dynamics of revolving fluids,” Proc. Roy. Soc. A, vol. 93, p. 148, 1916.10.1098/rspa.1917.0010Suche in Google Scholar

[5] M. S. Anil Iype and M. Subbiah, “On the hydrodynamic and hydromagnetic stability of inviscid flows between coaxial cylinders,” Inter. J. Fluid Mech. Res., vol. 37, no. 2, p. 1, 2010.10.1615/InterJFluidMechRes.v37.i2.20Suche in Google Scholar

[6] P. Pavithra and M. Subbaih, “Note on instability regions in the circular Rayleigh problem of hydrodynamic stability,” Proc. Natl. Acad. Sci., India, Sec. A Phys. Sci., vol. 91, p. 49, 2021, https://doi.org/10.1007/s40010-019-00654-z.Suche in Google Scholar

[7] P. Pavithra and M. Subbaih, “On sufficient conditions for stability in the circular Rayleigh problem of hydrodynamic stability,” J. Anal., vol. 27, no. 3, p. 781, 2019, https://doi.org/10.1007/s41478-018-0128-z.Suche in Google Scholar

[8] L. N. Howard and A. S. Gupta, “On the hydrodynamic and hydromagnetic stability of swirling flows,” J. Fluid Mech., vol. 14, p. 463, 1962, https://doi.org/10.1017/s0022112062001366.Suche in Google Scholar

[9] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, UK, Cambridge University Press, 1981.Suche in Google Scholar

[10] L. N. Howard, “Note on a paper of John W. Miles,” J. Fluid Mech., vol. 10, no. 4, p. 509, 1961, https://doi.org/10.1017/s0022112061000317.Suche in Google Scholar

[11] J. Pedlosky, Geophysical Fluid Dynamics, New York, Springer, 1979.10.1007/978-1-4684-0071-7Suche in Google Scholar

[12] J. Deng, L. Pratt, L. Howard, and C. Jones, “On stratified shear flows in sea straits of arbitrary cross section,” Stud. Appl. Math., vol. 111, p. 409, 2003, https://doi.org/10.1111/1467-9590.t01-1-00040.Suche in Google Scholar

[13] S. C. Agarwal and G. S. Agarwal, “Hydromagnetic stability of heterogenous shear flows,” J. Phys. Soc. Jpn., vol. 27, pp. 218–223, 1969.10.1143/JPSJ.27.218Suche in Google Scholar

[14] S. L. Gavrilyuk and V. M. Techukov, “Linear stability of parallel inviscid flows of shallow water and bubbly fluid,” Stud. Appl. Math., vol. 113, p. 1, 2004, https://doi.org/10.1111/j.1467-9590.2004.01486.x.Suche in Google Scholar

[15] J. Mark, S. D. Griffiths, and D. W. Hughes, “Shear flow instabilities in shallow-water magnetohydrodynamics,” J. Fluid Mech., vol. 788, p. 767, 2016, https://doi.org/10.1017/jfm.2015.718.Suche in Google Scholar

[16] Y. T. Fung, “Non-axisymmetric instability of a rotating layer of fluid,” J. Fluid Mech., vol. 127, p. 83, 1983, https://doi.org/10.1017/s0022112083002621.Suche in Google Scholar

[17] G. T. Kochar and R. K. Jain, “Note on Howard’s semicircle theorem,” J. Fluid Mech., vol. 91, no. 3, p. 489, 1979, https://doi.org/10.1017/s0022112079000276.Suche in Google Scholar

[18] M. B. Banerjee, J. R. Gupta, and M. Subbiah, “On reducing Howard’s semicircle for homogeneous shear flows,” J. Math. Anal. Appl., vol. 130, p. 398, 1988, https://doi.org/10.1016/0022-247x(88)90315-0.Suche in Google Scholar

[19] M. B. Banerjee, J. R. Gupta, and M. Subbiah, “A modified instability criterion for heterogeneous shear flows,” Indian J. Pure Appl. Math., vol. 18, no. 4, p. 371, 1987.Suche in Google Scholar

[20] M. Padmini and M. Subbiah, “Note on Kuo′s problem,” J. Math. Anal. Appl., vol. 173, p. 659, 1993, https://doi.org/10.1006/jmaa.1993.1097.Suche in Google Scholar

[21] M. Padmini and M. Subbiah, “Bounds on the phase speed and growth rate of barotropic–baroclinic instability problem,” Fluid Dyn. Res., vol. 24, p. 1, 1999, https://doi.org/10.1016/s0169-5983(98)00010-0.Suche in Google Scholar

[22] J. R. Gupta, R. G. Shandil, and R. D. Rana, “On the limitations of the complex wave velocity in the instability problem of heterogeneous shear flows,” J. Math. Anal. Appl., vol. 144, p. 367, 1989, https://doi.org/10.1016/0022-247x(89)90341-7.Suche in Google Scholar

Received: 2023-07-28
Accepted: 2023-09-01
Published Online: 2023-09-25
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0208/html
Button zum nach oben scrollen