Startseite Theoretical investigation on the elastic and mechanical properties of high-entropy alloys with partial replacement of Sc in Hf0.25Ti0.25Zr0.25Sc0.25−xAl x (x ≤ 15 %)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Theoretical investigation on the elastic and mechanical properties of high-entropy alloys with partial replacement of Sc in Hf0.25Ti0.25Zr0.25Sc0.25−xAl x (x ≤ 15 %)

  • Ajit Kumar Maddheshiya EMAIL logo , Shakti Pratap Singh , Devraj Singh , Phool Singh Yadav , Raja Ram Yadav und Thakur Prasad Yadav
Veröffentlicht/Copyright: 14. September 2023

Abstract

The theoretical assessment of mechanical and elastic properties is used to analyze the distinctive properties of high entropy alloys (HEAs) at room temperature. Using Lennard–Jones potential model, the second order elastic constants (SOECs) and third order elastic constants (TOECs) have been determined for the HEAs Hf0.25Ti0.25Zr0.25Sc0.25−xAl x (x ≤ 15 %) in their hexagonal close-packed (hcp) phases. SOECs have been used to calculate mechanical constants, Poisson’s ratio, Pugh’s ratio, Kleinman’s parameter. In order to determine the anisotropic behaviour of the selected HEAs, the elastic anisotropy has also been computed at room temperature. All the HEAs under consideration have anisotropy parameters that are not equal to one, indicating anisotropic behaviour. Later, the Grüneisen parameters were estimated for the chosen HEAs Hf0.25Ti0.25Zr0.25Sc0.25−xAl x (x ≤ 15 %) along longitudinal and shear modes of wave propagation. Analysis of the research results reveals the inherent properties of HEAs.


Corresponding author: Ajit Kumar Maddheshiya, Department of Physics, University of Allahabad, Prayagraj 211002, India, E-mail:

Acknowledgments

The authors are extremely greatful to the reviewers of the manuscript who have meticulously given their valuable comments for the enrichment of the manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: AKM conceived of the presented idea, performed the all computations, writing original draft; SPS, DS verified the analytical methods, writing-review and editing; TPY conceptualized, formal analysis, data curation, PSY, RRY supervised the findings of this work. The findings were considered by all authors, and they all contributed to the final publication.

  3. Competing interests: The authors state that they have no known competing financial interests or personal ties that would have influenced the work described in this study.

  4. Research funding: The authors are thankful to University Grant Commission, New Delhi for the financial support.

  5. Data availability: Data will be made available on request.

References

[1] J. W. Yeh, S. K. Chen, S. J. Lin, et al.., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater., vol. 6, p. 299, 2004. https://doi.org/10.1002/adem.200300567.Suche in Google Scholar

[2] M. C. Gao, C. S. Carney, A. N. Dogan, P. D. Jablonksi, J. A. Hawk, and D. E. Alman, “Design of refractory high-entropy alloys,” JOM, vol. 67, p. 2653, 2015. https://doi.org/10.1007/s11837-015-1617-z.Suche in Google Scholar

[3] C. C. Juan, M. H. Tsai, C. W. Tsai, et al.., “Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys,” Intermetallics, vol. 62, p. 76, 2015. https://doi.org/10.1016/j.intermet.2015.03.013.Suche in Google Scholar

[4] C. H. Chang, M. S. Titus, and J. W. Yeh, “Oxidation behavior between 700 and 1300° C of refractory TiZrNbHfTa high‐entropy alloys containing aluminum,” Adv. Eng. Mater., vol. 20, p. 8, 2018. https://doi.org/10.1002/adem.201700948.Suche in Google Scholar

[5] M. C. Gao, B. Zhang, S. M. Guo, J. W. Qiao, and J. A. Hawk, “High-entropy alloys in hexagonal close-packed structure,” Metall. Mater. Trans. A, vol. 47A, p. 3322, 2016. https://doi.org/10.1007/s11661-015-3091-1.Suche in Google Scholar

[6] J. Luznik, P. Kozelj, S. Vrtnik, et al.., “Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy,” Phys. Rev. B, vol. 92, p. 14, 2015. https://doi.org/10.1103/physrevb.92.224201.Suche in Google Scholar

[7] S. S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, et al.., “Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion,” Adv. Mater., vol. 31, p. 1807142, 2019. https://doi.org/10.1002/adma.201807142.Suche in Google Scholar PubMed

[8] S. Wang, D. Wu, H. She, et al.., “Design of high-ductile medium entropy alloys for dental implants,” Mater. Sci. Eng. C: Mater. Biol. Appl., vol. 113, p. 110959, 2020. https://doi.org/10.1016/j.msec.2020.110959.Suche in Google Scholar PubMed

[9] T. Huang, H. Jiang, Y. Lu, T. Wang, and T. Li, “Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys,” Appl. Phys. A, vol. 125, p. 180, 2019. https://doi.org/10.1007/s00339-019-2484-1.Suche in Google Scholar

[10] L. Rogal, F. Czerwinski, P. T. Jochym, and L. Litynska-Dobrzynska, “Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions,” Mater. Des., vol. 92, p. 8, 2016. https://doi.org/10.1016/j.matdes.2015.11.104.Suche in Google Scholar

[11] R. X. Li, J. W. Qiao, P. K. Liaw, and Y. Zhang, “Preternatural hexagonal high-entropy alloys: a review,” Acta Metall. Sin., vol. 33, p. 1033, 2020. https://doi.org/10.1007/s40195-020-01045-9.Suche in Google Scholar

[12] L. Rogal, P. Bobrowski, F. K. Rmann, S. Divinski, F. Stein, and B. Grabowski, “Computationally-driven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy,” Sci. Rep., vol. 7, p. 2209, 2017. https://doi.org/10.1038/s41598-017-02385-w.Suche in Google Scholar PubMed PubMed Central

[13] Y. L. Chen, C. W. Tsai, C. C. Juan, et al.., “Amorphization of equimolar alloys with HCP elements during mechanical alloying,” J. Alloys Compd., vol. 506, p. 210, 2010. https://doi.org/10.1016/j.jallcom.2010.06.179.Suche in Google Scholar

[14] X. Li, F. Tian, S. Schönecker, J. Zhao, and L. Vitos, “Ab initio-predicted micro-mechanical performance of refractory high-entropy alloys,” Sci. Rep., vol. 5, p. 12334, 2015. https://doi.org/10.1038/srep12334.Suche in Google Scholar PubMed PubMed Central

[15] Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, and C. C. Tasan, “Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off,” Nature, vol. 5, p. 227, 2016. https://doi.org/10.1038/nature17981.Suche in Google Scholar PubMed

[16] Z. Li and D. Raabe, “Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties,” JOM, vol. 21, p. 1, 2017. https://doi.org/10.1007/s11837-017-2540-2.Suche in Google Scholar PubMed PubMed Central

[17] H. Meng, J. Duan, X. Chen, S. Jiang, L. Shao, and B. Tang, “Influence of local lattice distortion on elastic properties of hexagonal close-packed TiZrHf and TiZrHfSc refractory alloys,” Phys. Status Solidi B, vol. 258, p. 2100025, 2021. https://doi.org/10.1002/pssb.202100025.Suche in Google Scholar

[18] Y. Tong, K. Jin, H. Bei, et al.., “Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction,” Mater. Des., vol. 1, p. 155, 2018. https://doi.org/10.1016/j.matdes.2018.05.056.Suche in Google Scholar

[19] J. W. Yeh, “Alloy design strategies and future trends in high-entropy alloys,” JOM, vol. 65, p. 1759, 2013. https://doi.org/10.1007/s11837-013-0761-6.Suche in Google Scholar

[20] V. K. Yusenko, R. Sephira, P. A. Carvalho, et al.., “First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation,” Scr. Mater., vol. 138, p. 22, 2017. https://doi.org/10.1016/j.scriptamat.2017.05.022.Suche in Google Scholar

[21] J. M. Duan, L. Shao, T. W. Fan, X. T. Chen, and B. Y. Tang, “An initio study of influence of substitution of Sc with Al on intrinsic mechanical properties of hexagonal high-entropy alloys Hf0.25Ti0.25Zr0.25Sc0.25−xAlx (x ≤ 15%),” Mater. Today Commun., vol. 29, p. 102875, 2021. https://doi.org/10.1016/j.mtcomm.2021.102875.Suche in Google Scholar

[22] Y. Tong, L. Bai, X. Liang, et al.., “Influence of alloying elements on mechanical and electronic properties NbMoTaWX (X = Cr, Zr, V, Hf and Re) refractory high entropy alloys,” Intermetallics, vol. 126, p. 106928, 2020. https://doi.org/10.1016/j.intermet.2020.106928.Suche in Google Scholar

[23] C. P. Yadav, D. K. Pandey, and D. Singh, “Ultrasonic study of Laves phase compounds ScOs2 and YOs2,” Indian J. Phys., vol. 93, p. 1147, 2019. https://doi.org/10.1007/s12648-019-01389-8.Suche in Google Scholar

[24] K. Brügger, “Thermodynamic definition of higher order elastic coefficients,” Phys. Rev. A, vol. 133, p. 1611, 1964. https://doi.org/10.1103/physrev.133.a1611.Suche in Google Scholar

[25] S. P. Singh, G. Singh, A. K. Verma, P. K. Yadawa, and R. R. Yadav, “Ultrasonic wave propagation in thermoelectric ZrX2 (X = S, Se) compounds,” Pramana – J. Phys., vol. 93, p. 83, 2019. https://doi.org/10.1007/s12043-019-1846-8.Suche in Google Scholar

[26] D. K. Pandey and R. R. Yadav, “Temperature dependent ultrasonic properties of aluminium nitride,” Appl. Acoust., vol. 70, p. 412, 2009. https://doi.org/10.1016/j.apacoust.2008.05.011.Suche in Google Scholar

[27] D. K. Pandey, P. K. Yadawa, and R. R. Yadav, “Ultrasonic properties of hexagonal ZnS at nanoscale,” Mater. Lett., vol. 61, p. 5194, 2007. https://doi.org/10.1016/j.matlet.2007.04.028.Suche in Google Scholar

[28] P. K. Dhawan, S. Upadhyaya, and S. K. Verma, “Size and temperature dependent ultrasonic properties of thermoelectric nanowires,” Mater. Lett., vol. 114, pp. 15–18, 2014.10.1016/j.matlet.2013.09.104Suche in Google Scholar

[29] W. Voigt, Lehrbuch der kristallphysik (mitausschluss der kristalloptik), Berlin, Leipzig, B.G. Teubner, 1928.Suche in Google Scholar

[30] A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizittitsbedingung fiir Einkristalle,” Z. Angew. Math. Mech., vol. 9, p. 49, 1929. https://doi.org/10.1002/zamm.19290090104.Suche in Google Scholar

[31] R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc., A., vol. 65, p. 349, 1952. https://doi.org/10.1088/0370-1298/65/5/307.Suche in Google Scholar

[32] N. Turkdal, E. Deligoz, and H. Ozisik, “First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo,” Phase Transit., vol. 90, no. 6, p. 598, 2017. https://doi.org/10.1080/01411594.2016.1252979.Suche in Google Scholar

[33] P. F. Weck, E. Kim, V. Tikare, and J. A. Mitchell, “Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory,” Dalton Trans., vol. 4, p. 18769, 2015. https://doi.org/10.1039/c5dt03403e.Suche in Google Scholar PubMed

[34] A. K. Maddheshiya, N. Yadav, S. P. Singh, D. Singh, P. S. Yadav, and R. R. Yadav, “Mechanical, elastic and microstructural investigations on HCP phase high-entropy alloys,” MAPAN, 2023. https://doi.org/10.1007/s12647-023-00674-6, In press.Suche in Google Scholar

[35] B. Jyoti, S. Tripathi, S. P. Singh, D. K. Singh, and D. Singh, “Elastic, mechanical, thermo-physical, and ultrasonic investigation in platinum carbide,” Mater. Today Commun., vol. 27, p. 102189, 2021. https://doi.org/10.1016/j.mtcomm.2021.102189.Suche in Google Scholar

[36] M. Nandanpawar and S. Rajagopalan, “Grüneisen numbers in hexagonal crystals,” J. Acoust. Soc. Am., vol. 71, p. 1496, 1982. https://doi.org/10.1121/1.387844.Suche in Google Scholar

[37] R. J. Sadus, “Second virial coefficient properties of the n-m Lennard-Jones/Mie potential,” Int. J. Chem. Phys., vol. 149, p. 074504, 2018. https://doi.org/10.1063/1.5041320.Suche in Google Scholar PubMed

[38] S. O. Pillai, Solid State Physics: Crystal Physics, 7th ed. New Delhi, New Age International Publisher, 2005.Suche in Google Scholar

[39] N. E. Koval, J. I. Juaristi, R. D. Muino, and M. Alducin, “Elastic properties of the TiZrNbTaMo multi-principal element alloy studied from first principles,” Intermetallics, vol. 106, p. 130, 2019. https://doi.org/10.1016/j.intermet.2018.12.014.Suche in Google Scholar

[40] Y. J. Sun, K. Xiong, S. M. Zhang, and Y. Mao, “First-principles investigations on the elastic properties of platinum group metals (Pt, Pd, and Ru),” Mater. Sci. Forum, vol. 944, p. 761, 2019. https://doi.org/10.4028/www.scientific.net/msf.944.761.Suche in Google Scholar

[41] A. K. Maddheshiya, S. P. Singh, D. Singh, P. S. Yadav, and R. R. Yadav, “Non-linear thermophysical behaviour of transition metal titanium,” Johnson Matthey Technol. Rev., vol. 67, 2024. https://doi.org/10.1595/205651323X16653975448311, In press.Suche in Google Scholar

[42] P. K. Dhawan, M. Wan, S. K. Verma, D. K. Pandey, and R. R. Yadav, “Effect of diameter and surface roughness on ultrasonic properties of GaAs nanowires,” J. Appl. Phys., vol. 117, p. 074307, 2015. https://doi.org/10.1063/1.4913289.Suche in Google Scholar

[43] S. P. Singh, P. K. Yadawa, P. K. Dhawan, A. K. Verma, and R. R. Yadav, “Ultrasonic wave propagation in thermoelectric ZrX2 (X = S, Se) compounds,” Cryogenics, vol. 100, p. 105, 2019. https://doi.org/10.1016/j.cryogenics.2019.03.006.Suche in Google Scholar

[44] D. Tromans, “Elastic anisotropy of hcp metal crystals and polycrystals,” Int. J. Res. Rev. Appl. Sci., vol. 6, p. 462, 2011.Suche in Google Scholar

[45] K. A. Matori, M. H. M. Zaid, H. A. A. Sidek, M. K. Halimah, Z. A. Wahab, and M. G. M. Sabri, “Influence of ZnO on the ultrasonic velocity and elastic moduli of soda lime silicate glasses,” Int. J. Phys. Sci., vol. 5, p. 2212, 2010.Suche in Google Scholar

[46] M. A. Hadi, M. A. Alam, M. Roknuzzama, M. T. Nasir, A. K. M. A. Islam, and S. H. Naqib, “Structural, elastic, and electronic properties of recently discovered ternary silicide superconductor Li2IrSi3: an ab-initio study,” Chin. Phys. B, vol. 24, p. 117401, 2015. https://doi.org/10.1088/1674-1056/24/11/117401.Suche in Google Scholar

Received: 2023-06-25
Accepted: 2023-09-01
Published Online: 2023-09-14
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0160/html
Button zum nach oben scrollen