Abstract
We construct a new class of nonlinear coherent states for the isotonic oscillator by replacing the factorial of the coefficients
Acknowledgment
The authors would like to thank the anonymous referee for the valuable comments and suggestions. The authors also are thankful to the Moroccan Association of Harmonic Analysis and Spectral Geometry.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] E. Schrödinger, “Der stretige Ubergang von der Mikro-zur Makromechanik,” Die Naturwissenschaften, vol. 14, p. 664, 1926. https://doi.org/10.1007/bf01507634.Suche in Google Scholar
[2] R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev., vol. 130, p. 2529, 1963. https://doi.org/10.1103/physrev.130.2529.Suche in Google Scholar
[3] J. R. Klauder and B. S. Skagerstam, Coherent States Applications in Physics and Mathematics, Singapore, World Scientific, 1985.10.1142/0096Suche in Google Scholar
[4] M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, Heidelberg, Springer Berlin, 2007.Suche in Google Scholar
[5] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerg, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature, vol. 421, p. 238, 2003. https://doi.org/10.1038/nature01289.Suche in Google Scholar PubMed
[6] R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev., vol. 131, p. 2766, 1963. https://doi.org/10.1103/physrev.131.2766.Suche in Google Scholar
[7] R. P. Feynman, “An operator calculus having applications in quantum electrodynamics,” Phys. Rev., vol. 84, pp. 108–128, 1951. https://doi.org/10.1103/physrev.84.108.Suche in Google Scholar
[8] G. Iwata, “Non-Hermitian operators and eigenfunction expansions,” Prog. Theor. Phys., vol. 6, pp. 216–226, 1951. https://doi.org/10.1143/ptp/6.2.216.Suche in Google Scholar
[9] R. Koekoek and R. Swarttouw, The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogues, Delft University of Technology, Delft, Reports of the Faculty of Technical Mathematics and Informatics no. 98-17, 1998.Suche in Google Scholar
[10] V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform part I,” Commun. Pure Appl. Math., vol. 14, pp. 187–214, 1961. https://doi.org/10.1002/cpa.3160140303.Suche in Google Scholar
[11] Z. B. Birula, “Properties of the generalized coherent state,” Phys. Rev., vol. 173, p. 1207, 1968. https://doi.org/10.1103/physrev.173.1207.Suche in Google Scholar
[12] M. M. Nieto and L. M. Simmons, “Coherent states for general potentials,” Phys. Rev. Lett., vol. 41, pp. 207–210, 1978. https://doi.org/10.1103/physrevlett.41.207.Suche in Google Scholar
[13] J. P. Gazeau and J. R. Klauder, “Coherent states for systems with discrete and continuous spectrum,” J. Phys. A: Math. Gen., vol. 32, p. 123, 1999. https://doi.org/10.1088/0305-4470/32/1/013.Suche in Google Scholar
[14] O. D. L. Santos-Sanchez and J. Recamier, “Nonlinear coherent states for nonlinear systems,” J. Phys. A: Math. Theor., vol. 44, p. 145307, 2011. https://doi.org/10.1088/1751-8113/44/14/145307.Suche in Google Scholar
[15] O. D. L. Santos-Sànchez and J. Récamier, “Phase space picture of morse-like coherent states based upon the Wigner function,” J. Phys. A: Math. Theor., vol. 45, p. 415310, 2012. https://doi.org/10.1088/1751-8113/45/41/415310.Suche in Google Scholar
[16] P. Shanta, S. Chaturvdi, V. Srinivasan, and R. Jagannathan, “Unified approach to the analogues of single photon and multiphoton coherent states for generalized bosonic oscillators,” J. Phys. A: Math. Gen., vol. 27, p. 6433, 1994. https://doi.org/10.1088/0305-4470/27/19/016.Suche in Google Scholar
[17] R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A, vol. 54, p. 4560, 1996. https://doi.org/10.1103/physreva.54.4560.Suche in Google Scholar PubMed
[18] V. I. Manko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr., vol. 55, p. 528, 1997. https://doi.org/10.1088/0031-8949/55/5/004.Suche in Google Scholar
[19] M. Temme, Special Functions an Introduction to the Classical Functions of Mathematical Physics, New York, A Wiley-Interscience Publication, 1996.10.1002/9781118032572Suche in Google Scholar
[20] K. Ahbli, P. Kayupe Kikiodio, and Z. Mouayn, “Orthogonal polynomials attached to coherent states for the symmetric Pöschl–Teller oscillator,” Integral Transform. Spec. Funct., vol. 27, pp. 806–823, 2016. https://doi.org/10.1080/10652469.2016.1210143.Suche in Google Scholar
[21] S. T. Ali and M. E. H. Ismail, “Some orthogonal polynomials arising from coherent states,” J. Phys. A: Math. Theor., vol. 45, p. 125203, 2012. https://doi.org/10.1088/1751-8113/45/12/125203.Suche in Google Scholar
[22] A. M. Perelomov, Generalized Coherent States and Their Applications, Berlin, Springer, 1986.10.1007/978-3-642-61629-7Suche in Google Scholar
[23] P. Flagolet, M. E. H. Ismail, and E. Lutwak, Classical and Quantum Orthogonal Polynomials in One Variable, vol. 98, Cambridge, Cambridge University Press, 2005.Suche in Google Scholar
[24] R. Roknizadeh and M. K. Tavassoly, “The construction of some important classes of generalized coherent states: the nonlinear coherent states method,” J. Phys. A: Math. Gen., vol. 37, p. 8111, 2004. https://doi.org/10.1088/0305-4470/37/33/010.Suche in Google Scholar
[25] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, “Even and odd coherent states and excitations of a singular oscillator,” Physica, vol. 72, pp. 597–615, 1974. https://doi.org/10.1016/0031-8914(74)90215-8.Suche in Google Scholar
[26] B. Roy, “Nonclassical properties of the real and imaginary nonlinear Schrödinger cat states,” Phy. Lett. A., vol. 249, p. 25, 1998. https://doi.org/10.1016/s0375-9601(98)00642-2.Suche in Google Scholar
[27] I. I. Goldman and D. V. Krivchenkov, Problems in Quantum Mechanics, London, Pergamon, 1961.Suche in Google Scholar
[28] D. Popov, “Barut-Girardello, coherent states of the pseudoharmonic oscillator,” J. Phys. A: Math. Gen., vol. 34, pp. 5283–5296, 2001.Suche in Google Scholar
[29] J. Bentacor, “Transference of Lp-boundedness between harmonic analysis operators for Laguerre and Hermite settings,” Rev. Union Mat. Argent., vol. 50, pp. 39–46, 2009.Suche in Google Scholar
[30] K. Thirulogasanthar and N. Saad, “Coherent states associated to the wavefunctions and the spectrum of the isotonic oscillator,” J. Phys. A: Math. Gen., vol. 37, pp. 4567–4577, 2004. https://doi.org/10.1088/0305-4470/37/16/007.Suche in Google Scholar
[31] E. D. Rainville, Special Functions, New York, Macmillan Company, 1960.Suche in Google Scholar
[32] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, New York, Springer-Verlag Berlin Heidelberg, 1966.10.1007/978-3-662-11761-3Suche in Google Scholar
[33] L. Mandel, “Sub-poissonian photon statistics in resonance fluorescence,” Opt. Lett., vol. 4, pp. 205–207, 1979. https://doi.org/10.1364/ol.4.000205.Suche in Google Scholar PubMed
[34] M. N. Hounkonnou and J. D. B. Kyemba, “(R,p,q)-deformed Heisenberg algebras: coherent states and special functions,” J. Math. Phys., vol. 51, p. 063518, 2010. https://doi.org/10.1063/1.3429996.Suche in Google Scholar
[35] M. N. Hounkonnou, S. Arjika, and E. Baloitcha, “Pöschl–Teller Hamiltonian: Gazeau–Klauder type coherent states, related statistics and geometry,” J. Math. Phys., vol. 55, p. 123502, 2014. https://doi.org/10.1063/1.4902932.Suche in Google Scholar
[36] V. V. Dodonov, S. Y. Kalmykov, and V. I. Man’ko, “Statistical properties of Schrödinger real and imaginary cat states,” Phys. Lett. A, vol. 199, pp. 123–130, 1995. https://doi.org/10.1016/0375-9601(95)00048-8.Suche in Google Scholar
[37] J. Liao, X. Wang, L. Wu, and S. H. Pan, “Real and imaginary negative binomial states,” J. Opt. B: Quantum Semiclass. Opt., vol. 3, pp. 302–307, 2001. https://doi.org/10.1088/1464-4266/3/5/303.Suche in Google Scholar
[38] X. Wang, “Coherence and squeezing in superpositions of spin coherent states,” Opt. Commun., vol. 200, pp. 277–282, 2001. https://doi.org/10.1016/s0030-4018(01)01631-5.Suche in Google Scholar
[39] H. B. Monir, N. Amir, and S. Iqbal, “Photon-added SU (1,1)Coherent states and their non-classical properties,” Int. J. Theor. Phys., vol. 58, pp. 1776–1790, 2019. https://doi.org/10.1007/s10773-019-04071-1.Suche in Google Scholar
[40] B. Mojaveri and A. Dehghani, “Generalized su(1,1) coherent states for pseudo harmonic oscillator and their nonclassical properties,” Eur. Phys. J. D, vol. 67, p. 179, 2013. https://doi.org/10.1140/epjd/e2013-40258-3.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Green creation of CoFe2O4 nanosorbent for superior toxic Cd ions elimination
- Dynamical Systems & Nonlinear Phenomena
- Nonlinear vibration of microbeams subjected to a uniform magnetic field and rested on nonlinear elastic foundation
- Delta-shock for the Chaplygin gas Euler equations with source terms
- Gravitation & Cosmology
- Some versions of Chaplygin gas model in modified gravity framework and validity of generalized second law of thermodynamics
- Quantum Theory
- Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator
- Solid State Physics & Materials Science
- Low-temperature small-angle electron-electron scattering rate in Fermi metals
Artikel in diesem Heft
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Green creation of CoFe2O4 nanosorbent for superior toxic Cd ions elimination
- Dynamical Systems & Nonlinear Phenomena
- Nonlinear vibration of microbeams subjected to a uniform magnetic field and rested on nonlinear elastic foundation
- Delta-shock for the Chaplygin gas Euler equations with source terms
- Gravitation & Cosmology
- Some versions of Chaplygin gas model in modified gravity framework and validity of generalized second law of thermodynamics
- Quantum Theory
- Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator
- Solid State Physics & Materials Science
- Low-temperature small-angle electron-electron scattering rate in Fermi metals