Abstract
In the work reported in this paper, we have analyzed generalized Chaplygin gas (GCG) and modified generalized Chaplygin gas (MGCG) in an interacting scenario. The equation of state parameter has been analyzed in both the cases and the stability of the models has been discerned through squared speed of sound. Stability against gravitational perturbations has been observed for both GCG and MGCG interacting with pressureless dark matter. Also, the generalized second law (GSL) of thermodynamics has been tested for different enveloping horizons and validity of GSL has been observed throughout. Furthermore, f(T) gravity has been reconstructed with GCG and MGCG and phantom behaviour has been observed through reconstructed EoS parameters. The squared speed of sound has been derived for f(T) gravity and stability of the model has been established through its positivity.
Funding source: Council of Scientific and Industrial Research
Award Identifier / Grant number: 03(1420)/18/EMR-II
Acknowledgment
The authors sincerely acknowledge the insightful comments from the reviewers.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Surajit Chattopadhyay acknowledges financial support from the Council of Scientific and Industrial Research (Government of India) with Grant No. 03(1420)/18/EMR-II.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] S. Perlmutter, G. Aldering, G. Goldhaber, et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astrophys. J., vol. 517, pp. 565–586, 1999.10.1086/307221Search in Google Scholar
[2] A. G. Riess, A. V. Filippenko, P. Challis, et al.., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., vol. 116, pp. 1009–1038, 1998. https://doi.org/10.1086/300499.Search in Google Scholar
[3] J. A. Frieman, M. S. Turner, and D. Huterer, “Dark energy and the accelerating universe,” Annu. Rev. Astron. Astrophys., vol. 46, pp. 385–432, 2008. https://doi.org/10.1146/annurev.astro.46.060407.145243.Search in Google Scholar
[4] E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D, vol. 15, pp. 1753–1935, 2006. https://doi.org/10.1142/s021827180600942x.Search in Google Scholar
[5] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests,” Astrophys. Space Sci., vol. 342, pp. 155–228, 2012. https://doi.org/10.1007/s10509-012-1181-8.Search in Google Scholar
[6] R. R. Caldwell and M. Kamionkowski, “The physics of cosmic acceleration,” Annu. Rev. Nucl. Part. Sci., vol. 59, pp. 397–429, 2009. https://doi.org/10.1146/annurev-nucl-010709-151330.Search in Google Scholar
[7] Y.-F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, “Quintom cosmology: theoretical implications and observations,” Phys. Rep., vol. 493, pp. 1–60, 2010. https://doi.org/10.1016/j.physrep.2010.04.001.Search in Google Scholar
[8] V. Sahni and A. Starobinsky, “Reconstructing dark energy,” Int. J. Mod. Phys. D, vol. 15, pp. 2105–2132, 2006. https://doi.org/10.1142/s0218271806009704.Search in Google Scholar
[9] T. Padmanabhan, “Dark energy and gravity,” Gen. Relat. Gravit., vol. 40, pp. 529–564, 2008. https://doi.org/10.1007/s10714-007-0555-7.Search in Google Scholar
[10] T. Padmanabhan, “Dark energy: the cosmological challenge of the millennium,” Curr. Sci., vol. 88, pp. 1057–1067, 2005.Search in Google Scholar
[11] S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models,” Phys. Rep., vol. 505, pp. 59–144, 2011. https://doi.org/10.1016/j.physrep.2011.04.001.Search in Google Scholar
[12] S. Capozziello and M. De Laurentis, “Interpreting the dark side of the universe as curvature effects,” Nucl. Part. Phys. Proc., vols. 263–264, pp. 113–118, 2015. https://doi.org/10.1016/j.nuclphysbps.2015.04.021.Search in Google Scholar
[13] S. Nojiri, S. D. Odintsov, and V. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and late-time evolution,” Phys. Rep., vol. 692, pp. 1–104, 2017. https://doi.org/10.1016/j.physrep.2017.06.001.Search in Google Scholar
[14] S. Capozziello, “Curvature quintessence,” Int. J. Mod. Phys. D, vol. 11, pp. 483–491, 2002. https://doi.org/10.1142/s0218271802002025.Search in Google Scholar
[15] S. Capozziello, M. De Laurentis, and V. Faraoni, “A bird’s eye view of f (R)-Gravity,” Open Astron. J., vol. 3, pp. 49–72, 2010. https://doi.org/10.2174/1874381101003010049.Search in Google Scholar
[16] T. P. Sotiriou and V. Faraoni, “f(R) theories of gravity,” Rev. Mod. Phys., vol. 82, pp. 451–497, 2010. https://doi.org/10.1103/revmodphys.82.451.Search in Google Scholar
[17] A. De Felice and S. Tsujikawa, “f(R) theories,” Living Rev. Relat., vol. 13, p. 3, 2010. https://doi.org/10.12942/lrr-2010-3.Search in Google Scholar PubMed PubMed Central
[18] Y.-F. Cai, S. Capozziello, M. De Laurentis, and E. N. Saridakis, “f(T) teleparallel gravity and cosmology,” to appear in Rep. Prog. Phys., 2016, arXiv: 1511.07586 [gr-qc].10.1088/0034-4885/79/10/106901Search in Google Scholar PubMed
[19] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and cosmology,” Phys. Rep., vol. 513, pp. 1–189, 2012. https://doi.org/10.1016/j.physrep.2012.01.001.Search in Google Scholar
[20] S. Capozziello and M. De Laurentis, “Extended theories of gravity,” Phys. Rep., vol. 509, pp. 167–321, 2011. https://doi.org/10.1016/j.physrep.2011.09.003.Search in Google Scholar
[21] S. Capozziello, S. Nojirib, and S. D. Odintsov, “Dark energy: the equation of state description versus scalar-tensor or modified gravity,” Phys. Lett. B, vol. 643, pp. 93–97, 2006. https://doi.org/10.1016/j.physletb.2006.01.065.Search in Google Scholar
[22] A. Sasidharan and T. K. Mathew, “Bulk viscous matter and recent acceleration of the universe,” Eur. Phys. J. C, vol. 75, p. 748, 2015. https://doi.org/10.1140/epjc/s10052-015-3567-6.Search in Google Scholar
[23] T. K. Mathew, M. B. Aswathy, and M. Manoj, “Cosmology and thermodynamics of FLRW universe with bulk viscous stiff fluid,” Phys. J. C, vol. 74, p. 3188, 2014. https://doi.org/10.1140/epjc/s10052-014-3188-5.Search in Google Scholar
[24] S. Chattopadhyay, “Israel-Stewart approach to viscous dissipative extended holographic Ricci dark energy dominated Universe,” Adv. High Energy Phys., vol. 2016, p. 8515967, 2016. https://doi.org/10.1155/2016/8515967.Search in Google Scholar
[25] S. D. Odintsov and V. K. Oikonomou, “Dynamical systems perspective of cosmological finite-time singularities in f(R) gravity and interacting multifluid cosmology,” Phys. Rev. D, vol. 98, p. 024013, 2018. https://doi.org/10.1103/PhysRevD.98.024013.Search in Google Scholar
[26] V. K. Oikonomou, “Classical and loop quantum cosmology phase space of interacting dark energy and superfluid dark matter,” Phys. Rev. D, vol. 99, p. 104042, 2018. https://doi.org/10.1103/physrevd.99.104042.Search in Google Scholar
[27] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, and T. Paul, “Unifying holographic inflation with holographic dark energy: a covariant approach,” Phys. Rev. D, vol. 102, p. 023540, 2020. https://doi.org/10.1103/physrevd.102.023540.Search in Google Scholar
[28] A. Awad, W. El Hanafy, G. G. L. Nashed, S. D. Odintsov, and V. K. Oikonomou, “Constant-roll inflation in f(T) teleparallel gravity,” J. Cosmol. Astropart. Phys., vol. 07, p. 026, 2018. https://doi.org/10.1088/1475-7516/2018/07/026.Search in Google Scholar
[29] J. Amorós, J. de Haro, and S. D. Odintsov, “Bouncing loop quantum cosmology from F(T)gravity,” Phys. Rev. D, vol. 87, p. 104037, 2013. https://doi.org/10.1103/physrevd.87.104037.Search in Google Scholar
[30] L. Amendola, F. Finelli, C. Burigana, and D. Carturan, “WMAP and the generalized Chaplygin gas,” J. Cosmol. Astropart. Phys., vol. 07, p. 005, 2003. https://doi.org/10.1088/1475-7516/2003/07/005.Search in Google Scholar
[31] E. Elizalde and M. Khurshudyan, “Wormhole formation in f(R,T) gravity: varying Chaplygin gas and barotropic fluid,” Phys. Rev. D, vol. 98, p. 123525, 2018. https://doi.org/10.1103/physrevd.98.123525.Search in Google Scholar
[32] A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Phys. Lett. B, vol. 511, pp. 265–268, 2001. https://doi.org/10.1016/s0370-2693(01)00571-8.Search in Google Scholar
[33] Z.-K. Guo and Y.-Z. Zhangb, “Cosmology with a variable Chaplygin gas,” Phys. Lett. B, vol. 645, pp. 326–329, 2007. https://doi.org/10.1016/j.physletb.2006.12.063.Search in Google Scholar
[34] R. Herrera, M. Olivares, and N. Videla, “Intermediate-generalized Chaplygin gas inflationary universe model,” Eur. Phys. J. C, vol. 73, p. 2295, 2013. https://doi.org/10.1140/epjc/s10052-013-2295-z.Search in Google Scholar
[35] M. C. Bento, O. Bertolami, and A. A. Sen, “Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification,” Phys. Rev. D, vol. 66, p. 043507, 2002. https://doi.org/10.1103/physrevd.66.043507.Search in Google Scholar
[36] W. Chakraborty and U. Debnath, “A new variable modified Chaplygin gas model interacting with a scalar field,” Gravit. Cosmol., vol. 16, pp. 223–227, 2010. https://doi.org/10.1134/S0202289310030059.Search in Google Scholar
[37] M. R. Setare, “Interacting generalized Chaplygin gas model in non-flat universe,” Eur. Phys. J. C, vol. 52, p. 689, 2007. https://doi.org/10.1140/epjc/s10052-007-0405-5.Search in Google Scholar
[38] M. R. Setare, “Interacting holographic generalized Chaplygin gas model,” Phys. Lett. B, vol. 654, pp. 1–6, 2007. https://doi.org/10.1016/j.physletb.2007.08.038.Search in Google Scholar
[39] K. Bamba, U. Debnath, K. Yesmakhanova, P. Tsyba, G. Nugmanova, and R. Myrzakulov, “Periodic cosmological evolutions of equation of state for dark energy,” Entropy, vol. 14, pp. 2351–2374, 2012. https://doi.org/10.3390/e14112351.Search in Google Scholar
[40] V. Gorini, A. Kamenshchik, and U. Moschella, “Can the Chaplygin gas be a plausible model for dark energy?,” Phys. Rev. D, vol. 67, p. 063509, 2003. https://doi.org/10.1103/physrevd.67.063509.Search in Google Scholar
[41] N. Bilic, “Thermodynamics of dark energy,” Fortschr. Phys., vol. 56, pp. 363–372, 2008. https://doi.org/10.1002/prop.200710507.Search in Google Scholar
[42] M. Sharif and A. Sarwar, “Thermodynamics of generalized cosmic Chaplygin gas model,” Mod. Phys. Lett. A, vol. 31, p. 1650061, 2016. https://doi.org/10.1142/s0217732316500619.Search in Google Scholar
[43] H. B. Benaoum, “Modified Chaplygin gas cosmology,” Adv. High Energy Phys., vol. 2012, p. 357802, 2012. https://doi.org/10.1155/2012/357802.Search in Google Scholar
[44] P. Thakur, S. Ghose, and B. C. Paul, “Modified Chaplygin gas and constraints on itsBparameter from cold dark matter and unified dark matter energy cosmological models,” Mon. Not. Roy. Astron. Soc., vol. 397, p. 1935, 2009. https://doi.org/10.1111/j.1365-2966.2009.15015.x.Search in Google Scholar
[45] J. Lu, D. Geng, L. Xu, Y. Wu, and M. Liu, “Reduced modified Chaplygin gas cosmology,” J. High Energy Phys., vol. 02, p. 071, 2015. https://doi.org/10.1007/JHEP02(2015)071.Search in Google Scholar
[46] H. B. Benaoum, “Modified Chaplygin gas cosmology with bulk viscosity,” Int. J. Mod. Phys. D, vol. 23, p. 1450082, 2014. https://doi.org/10.1142/s0218271814500825.Search in Google Scholar
[47] U. Debnath, “Constraining the parameters of modified Chaplygin gas in Einstein-Aether gravity,” Adv. High Energy Phys., vol. 2014, p. 653630, 2014. https://doi.org/10.1155/2014/653630.Search in Google Scholar
[48] B. Pourhassan, “Viscous modified cosmic Chaplygin gas cosmology,” Int. J. Mod. Phys. D, vol. 22, p. 1350061, 2013. https://doi.org/10.1142/s0218271813500612.Search in Google Scholar
[49] C. S. J. Pun, L. Gergely, M. K. Mak, Z. Kovcs, G. M. Szab, and T. Harko, “Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models,” Phys. Rev. D, vol. 77, p. 063528, 2008. https://doi.org/10.1103/physrevd.77.063528.Search in Google Scholar
[50] U. Debnath, A. Banerjee, and S. Chakraborty, “Role of modified Chaplygin gas in accelerated universe,” Classical Quant. Grav., vol. 21, p. 5609, 2004. https://doi.org/10.1088/0264-9381/21/23/019.Search in Google Scholar
[51] U. Debnath, “Variable modified Chaplygin gas and accelerating universe,” Astrophys. Space Sci., vol. 312, pp. 295–299, 2007. https://doi.org/10.1007/s10509-007-9690-6.Search in Google Scholar
[52] S. Chattopadhyay and U. Debnath, “Holographic dark energy scenario and variable modified Chaplygin gas,” Astrophys. Space Sci., vol. 319, pp. 183–185, 2009. https://doi.org/10.1007/s10509-009-9977-x.Search in Google Scholar
[53] D. Panigrahi and S. Chatterjee, “Thermodynamics of the variable modified Chaplygin gas,” J. Cosmol. Astropart. Phys., vol. 05, p. 0532, 2016.10.1088/1475-7516/2016/05/052Search in Google Scholar
[54] S. Chattopadhyay and U. Debnath, “Density evolution in the new modified Chaplygin gas model,” Gravit. Cosmol., vol. 14, pp. 342–346, 2008. https://doi.org/10.1134/S0202289308040099.Search in Google Scholar
[55] B. Pourhassan and E. O. Kahya, “FRW Cosmology with the extended Chaplygin gas,” Adv. High Energy Phys., vol. 2014, p. 231452, 2014. https://doi.org/10.1155/2014/231452.Search in Google Scholar
[56] E. O. Kahya and B. Pourhassan, “The universe dominated by the extended Chaplygin gas,” Mod. Phys. Lett. A, vol. 30, p. 1550070, 2015. https://doi.org/10.1142/s0217732315500704.Search in Google Scholar
[57] J. B. Dent, S. Dutta, and E. N. Saridakis, “f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis,” J. Cosmol. Astropart. Phys., vol. 1101, p. 009, 2011. https://doi.org/10.1088/1475-7516/2011/01/009.Search in Google Scholar
[58] K. Bamba, C.-Q. Geng, C.-C. Lee, and L.-W. Luo, “Equation of state for dark energy inf(T) gravity,” J. Cosmol. Astropart. Phys., vol. 1101, p. 021, 2011. https://doi.org/10.1088/1475-7516/2011/01/021.Search in Google Scholar
[59] K. Bamba, C.-Q. Geng and C.-C. Lee, “Comment on “Einstein’s other gravity and the acceleration of the Universe”,” arXiv: 1008.4036.Search in Google Scholar
[60] K. Bamba, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, “Reconstruction off(T)gravity: rip cosmology, finite-time future singularities, and thermodynamics,” Phys. Rev. D, vol. 85, p. 104036, 2012. https://doi.org/10.1103/physrevd.85.104036.Search in Google Scholar
[61] R. Ferraro and F. Fiorini, “Modified teleparallel gravity: inflation without an inflaton,” Phys. Rev. D, vol. 75, p. 084031, 2007. https://doi.org/10.1103/physrevd.75.084031.Search in Google Scholar
[62] K. Bamba, S. Nojiri, and S. D. Odintsov, “Effective F(T) gravity from the higher-dimensional Kaluza–Klein and Randall–sundrum theories,” Phys. Lett. B, vol. 725, pp. 368–371, 2013. https://doi.org/10.1016/j.physletb.2013.07.052.Search in Google Scholar
[63] R. Myrzakulov, “Accelerating universe from F(T) gravity,” Eur. Phys. J. C, vol. 71, p. 1752, 2011. https://doi.org/10.1140/epjc/s10052-011-1752-9.Search in Google Scholar
[64] T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, “f(R,T) gravity,” Phys. Rev. D, vol. 84, p. 024020, 2011. https://doi.org/10.1103/physrevd.84.024020.Search in Google Scholar
[65] S. Nesseris, S. Basilakos, E. N. Saridakis, and L. Perivolaropoulos, “Viable f(T) models are practically indistinguishable from ΛCDM,” Phys. Rev. D, vol. 88, p. 103010, 2013. https://doi.org/10.1103/physrevd.88.103010.Search in Google Scholar
[66] M. Krk and E. N. Saridakis, “The covariant formulation of f (T) gravity,” Classical Quant. Grav., vol. 33, p. 115009, 2016. https://doi.org/10.1088/0264-9381/33/11/115009.Search in Google Scholar
[67] S. Capozziello, O. Luongo, and E. N. Saridakis, “Transition redshift inf(T) cosmology and observational constraints,” Phys. Rev. D, vol. 91, p. 124037, 2015. https://doi.org/10.1103/physrevd.91.124037.Search in Google Scholar
[68] M. R. Setare and M. J. S. Houndjo, “Finite-time future singularity models in f(T) gravity and the effects of viscosity,” Can. J. Phys., vol. 91, pp. 260–267, 2013. https://doi.org/10.1139/cjp-2012-0533.Search in Google Scholar
[69] S. Nojiri, S. D. Odintsov, and D. Sez-Gmez, “Cyclic, ekpyrotic and little rip universe in modified gravity,” AIP Conf. Proc., vol. 1458, pp. 207–221, 2012. https://doi.org/10.1063/1.4734414.Search in Google Scholar
[70] S. Nojiri and S. D. Odintsov, “Modified gravity and its reconstruction from the universe expansion history,” J. Phys.: Conf. Ser., vol. 66, p. 012005, 2007. https://doi.org/10.1088/1742-6596/66/1/012005.Search in Google Scholar
[71] A. Khodam-Mohammadi, M. Malekjani, and M. Monshizadeh, “Reconstruction of modified gravity with ghost dark energy models,” Mod. Phys. Lett. A, vol. 27, p. 1250100, 2012. https://doi.org/10.1142/s0217732312501003.Search in Google Scholar
[72] A. Aghamohammadi, “Holographic f(T) gravity model,” Astrophys. Space Sci., vol. 352, pp. 1–5, 2014. https://doi.org/10.1007/s10509-014-1912-0.Search in Google Scholar
[73] S. Chattopadhyay, A. Jawad, and S. Rani, “Holographic polytropic f(T) gravity models,” Adv. High Energy Phys., vol. 2015, p. 798902, 2015. https://doi.org/10.1155/2015/798902.Search in Google Scholar
[74] S. Chattopadhyay and A. Pasqua, “Reconstruction of f(T) gravity from the holographic dark energy,” Astrophys. Space Sci., vol. 344, pp. 269–274, 2013. https://doi.org/10.1007/s10509-012-1315-z.Search in Google Scholar
[75] M. R. Setare, “Holographic modified gravity,” Int. J. Mod. Phys. D, vol. 17, pp. 2219–2228, 2008. https://doi.org/10.1142/s0218271808013819.Search in Google Scholar
[76] M. Jamil and M. A. Rashid, “Interacting modified variable Chaplygin gas in a non-flat universe,” Eur. Phys. J. C, vol. 58, p. 111, 2008. https://doi.org/10.1140/epjc/s10052-008-0722-3.Search in Google Scholar
[77] K. Karami, S. Asadzadeh, A. Abdolmaleki, and Z. Safari, “Holographicf(T)-gravity model with power-law entropy correction,” Phys. Rev. D, vol. 88, p. 084034, 2013. https://doi.org/10.1103/physrevd.88.084034.Search in Google Scholar
[78] K. Bamba, S. Capozziello, M. De Laurentis, S. Nojiri, and D. Sáez-Gómez, “No further gravitational wave modes in F (T) gravity,” Phys. Lett. B, vol. 727, nos. 1–3, pp. 194–198, 2013. https://doi.org/10.1016/j.physletb.2013.10.022.Search in Google Scholar
[79] K. Bambaa, S. Capozzielloa, M. De Laurentisa, S. Nojiri, and D. Sez-Gmez, “No further gravitational wave modes in F(T) gravity,” Phys. Lett. B, vol. 727, p. 194, 2013. https://doi.org/10.1016/j.physletb.2013.10.022.Search in Google Scholar
[80] S. Nojiri and S. D. Odintsov, “Final state and thermodynamics of a dark energy universe,” Phys. Rev. D, vol. 70, no. 10, p. 103522, 2004. https://doi.org/10.1103/physrevd.70.103522.Search in Google Scholar
[81] G. Chakraborty, S. Chattopadhyay, E. Güdekli, and I. Radinschi, “Thermodynamics of barrow holographic dark energy with specific cut-off,” Symmetry, vol. 2021, no. 13, p. 562, 2021. https://doi.org/10.3390/sym13040562.Search in Google Scholar
[82] G. Izquierdo and D. Pavón, “Dark energy and the generalized second law,” Phys. Lett. B, vol. 633, nos. 4–5, p. 420, 2006. https://doi.org/10.1016/j.physletb.2005.12.040.Search in Google Scholar
[83] M. R. Setare, “Interacting holographic dark energy model and generalized second law of thermodynamics in a non-flat universe,” J. Cosmol. Astropart. Phys., vol. 2007, no. 01, p. 023, 2007. https://doi.org/10.1088/1475-7516/2007/01/023.Search in Google Scholar
[84] A. Sheykhi and M. R. Setare, “Thermodynamical description of the interacting new agegraphic dark energy,” Mod. Phys. Lett. A, vol. 26, pp. 1897–1907, 2011. https://doi.org/10.1142/s021773231103636x.Search in Google Scholar
[85] T. Fu, J.-F. Zhang, J.-Q. Chen, and X. Zhang, “Holographic Ricci dark energy: interacting model and cosmological constraints,” Eur. Phys. J. C, vol. 72, p. 1932, 2012. https://doi.org/10.1140/epjc/s10052-012-1932-2.Search in Google Scholar
[86] S. Nojiri and S. D. Odintsov, “Unifying phantom inflation with late-time acceleration: scalar phantom–non-phantom transition model and generalized holographic dark energy,” Gen. Relat. Gravit., vol. 38, p. 1285, 2006. https://doi.org/10.1007/s10714-006-0301-6.Search in Google Scholar
[87] A. Kar, S. Sadhukhan, and S. S. Chattopadhyay, “Energy conditions for inhomogeneous EOS and its thermodynamics analysis with the resolution on finite time future singularity problems,” Int. J. Geomet. Methods Mod. Phys., vol. 18, no. 08, p. 2150131, 2021. https://doi.org/10.1142/s0219887821501310.Search in Google Scholar
[88] S. Chattopadhyay, “Interacting Ricci dark energy and its statefinder description,” Eur. Phys. J Plus, vol. 126, p. 130, 2011. https://doi.org/10.1140/epjp/i2011-11130-9.Search in Google Scholar
[89] P. Pankunni and T. K. Mathew, “Interacting modified holographic Ricci dark energy model and statefinder diagnosis in flat universe,” Int. J. Mod. Phys. D, vol. 23, p. 1450024, 2014. https://doi.org/10.1142/s0218271814500242.Search in Google Scholar
[90] O. Bertolami, F. Gil Pedro, and M. LeDelliou, “Dark energy–dark matter interaction and putative violation of the equivalence principle from the Abell cluster A586,” Phys. Lett. B, vol. 654, pp. 165–169, 2007. https://doi.org/10.1016/j.physletb.2007.08.046.Search in Google Scholar
[91] M. Baldi, “Clarifying the effects of interacting dark energy on linear and non-linear structure formation processes: coupled dark energy and structure formation,” Mon. Not. Roy. Astron. Soc., vol. 414, pp. 116–128, 2011. https://doi.org/10.1111/j.1365-2966.2011.18263.x.Search in Google Scholar
[92] S. Ghaffari, A. Sheykhi, and M. H. Dehghani, “Statefinder diagnosis for holographic dark energy in the DGP braneworld,” Phys. Rev. D, vol. 91, p. 023007, 2015. https://doi.org/10.1103/physrevd.91.023007.Search in Google Scholar
[93] G. R. Bengochea and R. Ferraro, “Dark torsion as the cosmic speed-up,” Phys. Rev. D, vol. 79, p. 124019, 2009. https://doi.org/10.1103/physrevd.79.124019.Search in Google Scholar
[94] S. Nojiri and S. D. Odintsov, “Inhomogeneous equation of state of the universe: phantom era, future singularity, and crossing the phantom barrier,” Phys. Rev. D, vol. 72, p. 023003, 2005. https://doi.org/10.1103/physrevd.72.023003.Search in Google Scholar
[95] S. Nojiri, S. D. Odintsov, and S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe,” Phys. Rev. D, vol. 71, p. 063004, 2005. https://doi.org/10.1103/physrevd.71.063004.Search in Google Scholar
[96] P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Rev. Mod. Phys., vol. 75, pp. 559–606, 2003. https://doi.org/10.1103/revmodphys.75.559.Search in Google Scholar
[97] V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, and A. Starobinsky, “Stability properties of some perfect fluid cosmological models,” Phys. Rev. D, vol. 72, p. 103518, 2005. https://doi.org/10.1103/physrevd.72.103518.Search in Google Scholar
[98] Y. S. Myung, “Instability of holographic dark energy models,” Phys. Lett. B, vol. 652, pp. 223–227, 2007. https://doi.org/10.1016/j.physletb.2007.07.033.Search in Google Scholar
[99] E. Ebrahimi and A. Sheykhi, “Instability of QCD ghost dark energy model,” Int. J. Mod. Phys. D, vol. 20, pp. 2369–2381, 2011. https://doi.org/10.1142/s021827181102041x.Search in Google Scholar
[100] M. L. Bedran, V. Soares, and M. E. Araujo, “Temperature evolution of the FRW universe filled with modified Chaplygin gas,” Phys. Lett. B, vol. 659, p. 462, 2008. https://doi.org/10.1016/j.physletb.2007.11.076.Search in Google Scholar
[101] M. Bouhmadi-Lopez, M. Brilenkov, R. Brilenkov, J. Morais, and A. Zhuk, “Scalar perturbations in the late Universe: viability of the Chaplygin gas models,” J. Cosmol. Astropart. Phys., vol. 12, p. 037, 2015. https://doi.org/10.1088/1475-7516/2015/12/037.Search in Google Scholar
[102] J. Morais, M. Bouhmadi-Lopez, and S. Capozziello, “Can f (R) gravity contribute to (dark) radiation?,” J. Cosmol. Astropart. Phys., vol. 12, p. 041, 2015. https://doi.org/10.1088/1475-7516/2015/09/041.Search in Google Scholar
[103] M. R. Setare, “Generalized second law of thermodynamics in quintom dominated universe,” Phys. Lett. B, vol. 641, no. 2, p. 130, 2006. https://doi.org/10.1016/j.physletb.2006.08.039.Search in Google Scholar
[104] M. Cvetič, S. Nojiri, and S. D. Odintsov, “Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss–Bonnet gravity,” Nucl. Phys. B, vol. 628, nos. 1–2, p. 295, 2002. https://doi.org/10.1016/s0550-3213(02)00075-5.Search in Google Scholar
[105] K. Bamba, M. Jamil, D. Momeni, and R. Myrzakulov, “Generalized second law of thermodynamics in f(T) gravity with entropy corrections,” Astrophys. Space Sci., vol. 344, no. 1, p. 259, 2013. https://doi.org/10.1007/s10509-012-1312-2.Search in Google Scholar
[106] S. I. Nojiri, S. D. Odintsov, E. N. Saridakis, and R. Myrzakulov, “Correspondence of cosmology from non-extensive thermodynamics with fluids of generalized equation of state,” Nucl. Phys. B, vol. 950, p. 114850, 2020. https://doi.org/10.1016/j.nuclphysb.2019.114850.Search in Google Scholar
[107] M. Li, C. H. Thompson, Y. E. Cossart, et al.., “The expression of key cell cycle markers and presence of human papillomavirus in squamous cell carcinoma of the tonsil,” Phys. Lett. B, vol. 603, p. 1, 2004. https://doi.org/10.1002/hed.10335.Search in Google Scholar PubMed
[108] R. Easther and D. A. Lowe, “Holography, cosmology, and the second law of thermodynamics,” Phys. Rev. Lett., vol. 82, p. 4967, 1999. https://doi.org/10.1103/physrevlett.82.4967.Search in Google Scholar
[109] R. G. Cai and S. P. Kim, “First law of thermodynamics and Friedmann equations of Friedmann–Robertson–Walker universe,” J. High Energy Phys., vol. 05, no. 02, p. 050, 2005. https://doi.org/10.1088/1126-6708/2005/02/050.Search in Google Scholar
[110] K. Karami and A. Abdolmaleki, “f(T) modified teleparallel gravity as an alternative for holographic and new agegraphic dark energy models,” Res. Astron. Astrophys., vol. 13, pp. 757–771, 2013. https://doi.org/10.1088/1674-4527/13/7/001.Search in Google Scholar
[111] M. R. Setare and F. Darabi, “Power-law solutions in f(T) gravity,” Gen. Relat. Gravit., vol. 44, pp. 2521–2527, 2012. https://doi.org/10.1007/s10714-012-1408-6.Search in Google Scholar
[112] K. Bambaa, S. Capozzielloa, M. De Laurentisa, S. Nojiria, and D. Sez-Gmez, “No further gravitational wave modes in F(T) gravity,” Phys. Lett. B, vol. 727, pp. 194–198, 2013. https://doi.org/10.1016/j.physletb.2013.10.022.Search in Google Scholar
[113] V. B. Johri, “Phantom cosmologies,” Phys. Rev. D, vol. 70, p. 041303(R), 2004. https://doi.org/10.1103/physrevd.70.041303.Search in Google Scholar
[114] S. Chattopadhyay, “Interacting modified Chaplygin gas in f(T) gravity framework and analysis of its stability against gravitational perturbation,” Int. J. Geomet. Methods Mod. Phys., vol. 14, no. 3, p. 1750035, 2017. https://doi.org/10.1142/S0219887817500359.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Green creation of CoFe2O4 nanosorbent for superior toxic Cd ions elimination
- Dynamical Systems & Nonlinear Phenomena
- Nonlinear vibration of microbeams subjected to a uniform magnetic field and rested on nonlinear elastic foundation
- Delta-shock for the Chaplygin gas Euler equations with source terms
- Gravitation & Cosmology
- Some versions of Chaplygin gas model in modified gravity framework and validity of generalized second law of thermodynamics
- Quantum Theory
- Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator
- Solid State Physics & Materials Science
- Low-temperature small-angle electron-electron scattering rate in Fermi metals
Articles in the same Issue
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Green creation of CoFe2O4 nanosorbent for superior toxic Cd ions elimination
- Dynamical Systems & Nonlinear Phenomena
- Nonlinear vibration of microbeams subjected to a uniform magnetic field and rested on nonlinear elastic foundation
- Delta-shock for the Chaplygin gas Euler equations with source terms
- Gravitation & Cosmology
- Some versions of Chaplygin gas model in modified gravity framework and validity of generalized second law of thermodynamics
- Quantum Theory
- Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator
- Solid State Physics & Materials Science
- Low-temperature small-angle electron-electron scattering rate in Fermi metals