Home Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator
Article
Licensed
Unlicensed Requires Authentication

Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator

  • Ghayth Ouirdani and Othmane El Moize EMAIL logo
Published/Copyright: November 1, 2023

Abstract

We construct a new class of nonlinear coherent states for the isotonic oscillator by replacing the factorial of the coefficients z n / n ! of the canonical coherent states by the factorial x n γ ! = x 1 γ . x 2 γ x n γ with x 0 γ = 0 , where x n γ is a sequence of positive numbers and γ is a positive real parameter. This also leads to the construction of a Bargmann-type integral transform which will allow us to find some integral transforms for orthogonal polynomials. The statistics of our coherent states will also be considered by the calculus of one called Mandel parameter. The squeezing phenomenon was also discussed.

AMS Classification: 81R30; 33C45; 44A15; 46E22

Corresponding author: Othmane El Moize, Ibn Tofail University, Faculty of Sciences, Kénitra, Morocco; and The Moroccan Association of Harmonic Analysis and Spectral Geometry (AHGS), Rabat, Morocco, E-mail:

Acknowledgment

The authors would like to thank the anonymous referee for the valuable comments and suggestions. The authors also are thankful to the Moroccan Association of Harmonic Analysis and Spectral Geometry.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] E. Schrödinger, “Der stretige Ubergang von der Mikro-zur Makromechanik,” Die Naturwissenschaften, vol. 14, p. 664, 1926. https://doi.org/10.1007/bf01507634.Search in Google Scholar

[2] R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev., vol. 130, p. 2529, 1963. https://doi.org/10.1103/physrev.130.2529.Search in Google Scholar

[3] J. R. Klauder and B. S. Skagerstam, Coherent States Applications in Physics and Mathematics, Singapore, World Scientific, 1985.10.1142/0096Search in Google Scholar

[4] M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, Heidelberg, Springer Berlin, 2007.Search in Google Scholar

[5] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerg, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature, vol. 421, p. 238, 2003. https://doi.org/10.1038/nature01289.Search in Google Scholar PubMed

[6] R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev., vol. 131, p. 2766, 1963. https://doi.org/10.1103/physrev.131.2766.Search in Google Scholar

[7] R. P. Feynman, “An operator calculus having applications in quantum electrodynamics,” Phys. Rev., vol. 84, pp. 108–128, 1951. https://doi.org/10.1103/physrev.84.108.Search in Google Scholar

[8] G. Iwata, “Non-Hermitian operators and eigenfunction expansions,” Prog. Theor. Phys., vol. 6, pp. 216–226, 1951. https://doi.org/10.1143/ptp/6.2.216.Search in Google Scholar

[9] R. Koekoek and R. Swarttouw, The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogues, Delft University of Technology, Delft, Reports of the Faculty of Technical Mathematics and Informatics no. 98-17, 1998.Search in Google Scholar

[10] V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform part I,” Commun. Pure Appl. Math., vol. 14, pp. 187–214, 1961. https://doi.org/10.1002/cpa.3160140303.Search in Google Scholar

[11] Z. B. Birula, “Properties of the generalized coherent state,” Phys. Rev., vol. 173, p. 1207, 1968. https://doi.org/10.1103/physrev.173.1207.Search in Google Scholar

[12] M. M. Nieto and L. M. Simmons, “Coherent states for general potentials,” Phys. Rev. Lett., vol. 41, pp. 207–210, 1978. https://doi.org/10.1103/physrevlett.41.207.Search in Google Scholar

[13] J. P. Gazeau and J. R. Klauder, “Coherent states for systems with discrete and continuous spectrum,” J. Phys. A: Math. Gen., vol. 32, p. 123, 1999. https://doi.org/10.1088/0305-4470/32/1/013.Search in Google Scholar

[14] O. D. L. Santos-Sanchez and J. Recamier, “Nonlinear coherent states for nonlinear systems,” J. Phys. A: Math. Theor., vol. 44, p. 145307, 2011. https://doi.org/10.1088/1751-8113/44/14/145307.Search in Google Scholar

[15] O. D. L. Santos-Sànchez and J. Récamier, “Phase space picture of morse-like coherent states based upon the Wigner function,” J. Phys. A: Math. Theor., vol. 45, p. 415310, 2012. https://doi.org/10.1088/1751-8113/45/41/415310.Search in Google Scholar

[16] P. Shanta, S. Chaturvdi, V. Srinivasan, and R. Jagannathan, “Unified approach to the analogues of single photon and multiphoton coherent states for generalized bosonic oscillators,” J. Phys. A: Math. Gen., vol. 27, p. 6433, 1994. https://doi.org/10.1088/0305-4470/27/19/016.Search in Google Scholar

[17] R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A, vol. 54, p. 4560, 1996. https://doi.org/10.1103/physreva.54.4560.Search in Google Scholar PubMed

[18] V. I. Manko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-oscillators and nonlinear coherent states,” Phys. Scr., vol. 55, p. 528, 1997. https://doi.org/10.1088/0031-8949/55/5/004.Search in Google Scholar

[19] M. Temme, Special Functions an Introduction to the Classical Functions of Mathematical Physics, New York, A Wiley-Interscience Publication, 1996.10.1002/9781118032572Search in Google Scholar

[20] K. Ahbli, P. Kayupe Kikiodio, and Z. Mouayn, “Orthogonal polynomials attached to coherent states for the symmetric Pöschl–Teller oscillator,” Integral Transform. Spec. Funct., vol. 27, pp. 806–823, 2016. https://doi.org/10.1080/10652469.2016.1210143.Search in Google Scholar

[21] S. T. Ali and M. E. H. Ismail, “Some orthogonal polynomials arising from coherent states,” J. Phys. A: Math. Theor., vol. 45, p. 125203, 2012. https://doi.org/10.1088/1751-8113/45/12/125203.Search in Google Scholar

[22] A. M. Perelomov, Generalized Coherent States and Their Applications, Berlin, Springer, 1986.10.1007/978-3-642-61629-7Search in Google Scholar

[23] P. Flagolet, M. E. H. Ismail, and E. Lutwak, Classical and Quantum Orthogonal Polynomials in One Variable, vol. 98, Cambridge, Cambridge University Press, 2005.Search in Google Scholar

[24] R. Roknizadeh and M. K. Tavassoly, “The construction of some important classes of generalized coherent states: the nonlinear coherent states method,” J. Phys. A: Math. Gen., vol. 37, p. 8111, 2004. https://doi.org/10.1088/0305-4470/37/33/010.Search in Google Scholar

[25] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, “Even and odd coherent states and excitations of a singular oscillator,” Physica, vol. 72, pp. 597–615, 1974. https://doi.org/10.1016/0031-8914(74)90215-8.Search in Google Scholar

[26] B. Roy, “Nonclassical properties of the real and imaginary nonlinear Schrödinger cat states,” Phy. Lett. A., vol. 249, p. 25, 1998. https://doi.org/10.1016/s0375-9601(98)00642-2.Search in Google Scholar

[27] I. I. Goldman and D. V. Krivchenkov, Problems in Quantum Mechanics, London, Pergamon, 1961.Search in Google Scholar

[28] D. Popov, “Barut-Girardello, coherent states of the pseudoharmonic oscillator,” J. Phys. A: Math. Gen., vol. 34, pp. 5283–5296, 2001.Search in Google Scholar

[29] J. Bentacor, “Transference of Lp-boundedness between harmonic analysis operators for Laguerre and Hermite settings,” Rev. Union Mat. Argent., vol. 50, pp. 39–46, 2009.Search in Google Scholar

[30] K. Thirulogasanthar and N. Saad, “Coherent states associated to the wavefunctions and the spectrum of the isotonic oscillator,” J. Phys. A: Math. Gen., vol. 37, pp. 4567–4577, 2004. https://doi.org/10.1088/0305-4470/37/16/007.Search in Google Scholar

[31] E. D. Rainville, Special Functions, New York, Macmillan Company, 1960.Search in Google Scholar

[32] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, New York, Springer-Verlag Berlin Heidelberg, 1966.10.1007/978-3-662-11761-3Search in Google Scholar

[33] L. Mandel, “Sub-poissonian photon statistics in resonance fluorescence,” Opt. Lett., vol. 4, pp. 205–207, 1979. https://doi.org/10.1364/ol.4.000205.Search in Google Scholar PubMed

[34] M. N. Hounkonnou and J. D. B. Kyemba, “(R,p,q)-deformed Heisenberg algebras: coherent states and special functions,” J. Math. Phys., vol. 51, p. 063518, 2010. https://doi.org/10.1063/1.3429996.Search in Google Scholar

[35] M. N. Hounkonnou, S. Arjika, and E. Baloitcha, “Pöschl–Teller Hamiltonian: Gazeau–Klauder type coherent states, related statistics and geometry,” J. Math. Phys., vol. 55, p. 123502, 2014. https://doi.org/10.1063/1.4902932.Search in Google Scholar

[36] V. V. Dodonov, S. Y. Kalmykov, and V. I. Man’ko, “Statistical properties of Schrödinger real and imaginary cat states,” Phys. Lett. A, vol. 199, pp. 123–130, 1995. https://doi.org/10.1016/0375-9601(95)00048-8.Search in Google Scholar

[37] J. Liao, X. Wang, L. Wu, and S. H. Pan, “Real and imaginary negative binomial states,” J. Opt. B: Quantum Semiclass. Opt., vol. 3, pp. 302–307, 2001. https://doi.org/10.1088/1464-4266/3/5/303.Search in Google Scholar

[38] X. Wang, “Coherence and squeezing in superpositions of spin coherent states,” Opt. Commun., vol. 200, pp. 277–282, 2001. https://doi.org/10.1016/s0030-4018(01)01631-5.Search in Google Scholar

[39] H. B. Monir, N. Amir, and S. Iqbal, “Photon-added SU (1,1)Coherent states and their non-classical properties,” Int. J. Theor. Phys., vol. 58, pp. 1776–1790, 2019. https://doi.org/10.1007/s10773-019-04071-1.Search in Google Scholar

[40] B. Mojaveri and A. Dehghani, “Generalized su(1,1) coherent states for pseudo harmonic oscillator and their nonclassical properties,” Eur. Phys. J. D, vol. 67, p. 179, 2013. https://doi.org/10.1140/epjd/e2013-40258-3.Search in Google Scholar

Received: 2023-07-26
Accepted: 2023-10-12
Published Online: 2023-11-01
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0206/html
Scroll to top button