Startseite Thermodynamics of the classical spin triangle
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamics of the classical spin triangle

  • Heinz-Jürgen Schmidt ORCID logo EMAIL logo und Christian Schröder
Veröffentlicht/Copyright: 13. April 2022

Abstract

The classical spin system consisting of three spins with Heisenberg interaction is an example of a completely integrable mechanical system. In this paper, we explicitly calculate thermodynamic quantities such as density of states, specific heat, susceptibility and spin autocorrelation functions. These calculations are performed (semi-)analytically and shown to agree with corresponding Monte Carlo simulations. It is shown that the thermodynamic functions depend qualitatively on the character of the system in terms of its frustration, especially w. r. t. their low temperature limit. For the long-time autocorrelation function, we find, for certain values of the coupling constants, a decay to constant values in the form of an 1/t damped harmonic oscillation and propose a theoretical explanation.


Corresponding author: Heinz-Jürgen Schmidt, Department of Physics, Osnabrück University, Osnabrück D-49069, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A: Details of the explicit time evolution

Instead of u we will use the variable x given by

(A1) x = x 0 + g u ,

where the constants x0 and g will be determined later such that the Weierstrass differential equation [[30], 23.3.10] is obtained. Also v and w can be linearly expressed in terms of the variable x in the form:

(A2) v = J 3 J 1 J 2 J 3 x g + v 0 ,
(A3) w = J 1 J 2 J 2 J 3 x g + w 0 .

We consider the time derivative of x:

(A4) x ̇ = ( A 1 ) g u ̇
(A5) = ( 22 ) ± g J 3 J 2 1 u 2 v 2 w 2 + 2 u v w = ( 14 ) g J 3 J 2 δ .

By substituting (A2), (A3) and (A1), the square of (A5) can be written as a 3rd order polynomial Π(x). g and x0 will be chosen such that the cubic term of Π(x) reads 4x3 and the quadratic term of Π(x) vanishes and hence

(A6) d x d t 2 = x ̇ 2 = g 2 J 3 J 2 2 δ 2 = Π ( x ) = 4 x 3 g 2 x g 3 .

This is achieved by setting

(A7) g = 1 2 J 1 J 2 J 1 J 3 ,

and

(A8) x 0 = 1 6 J 1 2 J 2 2 J 3 2 + J 1 J 3 + J 2 J 3 + J 1 J 2 + 2 J 1 J 2 J 3 ε + 2 J 2 J 3 J 1 J 2 + J 3 σ .

The explicit form of the coefficients g2 and g3 is more complicated:

(A9) g 2 = 1 3 J 1 2 J 2 2 ( σ + 1 ) ( σ + 3 ) + J 3 2 ( σ + 1 ) ( σ + 3 ) J 3 ( σ + 3 ) ϵ J 2 J 3 σ ( σ + 2 ) + ( σ + 3 ) ϵ + ϵ 2 J 1 J 2 3 ( σ + 2 ) + J 2 J 3 2 σ ( σ + 2 ) 6 J 3 ( σ + 2 ) ϵ + ϵ 2 + J 2 2 J 3 σ ( σ + 2 ) + ( σ + 3 ) ϵ + J 3 J 3 + ϵ J 3 ( σ + 2 ) + ϵ + J 2 2 J 3 2 ( σ + 1 ) ( σ + 3 ) J 3 ( σ + 3 ) ϵ + ϵ 2 J 1 3 J 2 ( σ + 2 ) + J 3 ( σ + 2 ) 2 ϵ J 2 3 J 3 ( σ + 2 ) 2 ϵ J 2 J 3 J 3 + ϵ J 3 ( σ + 2 ) + ϵ + J 3 2 J 3 + ϵ 2 + J 1 4 + J 2 4 ,

and

(A10) g 3 = 1 108 i = 1 8 g 3 ( i ) ,

where

(A11) g 3 ( 1 ) = 4 J 1 6 + 4 J 2 6 + 4 J 3 3 J 3 + ϵ 3 6 J 2 5 J 3 ( σ + 2 ) 2 ϵ 6 J 2 J 3 2 J 3 + ϵ 2 J 3 ( σ + 2 ) + ϵ ,
(A12) g 3 ( 2 ) = 6 J 1 5 J 2 ( σ + 2 ) + J 3 ( σ + 2 ) 2 ϵ + 3 J 2 4 J 3 2 ( σ ( 7 σ + 10 ) 1 ) 2 J 3 ( 2 σ + 5 ) ϵ + 4 ϵ 2 ,
(A13) g 3 ( 3 ) = 3 J 2 2 J 3 J 3 3 ( σ ( 7 σ + 10 ) 1 ) + 4 J 3 ( 2 σ + 3 ) ϵ 2 2 J 3 2 σ 2 2 ϵ 2 ϵ 3 ,
(A14) g 3 ( 4 ) = 3 J 1 4 J 2 2 ( σ ( 7 σ + 10 ) 1 ) + J 3 2 ( σ ( 7 σ + 10 ) 1 ) 2 J 2 J 3 5 σ 2 11 + ( 2 σ + 5 ) ϵ 2 J 3 ( 2 σ + 5 ) ϵ + 4 ϵ 2 ,
(A15) g 3 ( 5 ) = 2 J 2 3 J 3 3 ( σ ( σ ( 2 σ 15 ) 18 ) + 13 ) 3 J 3 ( σ + 4 ) ϵ 2 3 J 3 2 σ 2 2 ϵ + 2 ϵ 3
(A16) g 3 ( 6 ) = 2 J 1 3 J 2 3 ( σ ( σ ( 2 σ 15 ) 18 ) + 13 ) + J 3 3 ( σ ( σ ( 2 σ 15 ) 18 ) + 13 ) 3 J 3 ( σ + 4 ) ϵ 2 3 J 2 J 3 2 ( σ ( ( σ 1 ) σ + 4 ) + 11 ) 4 J 3 ( σ + 2 ) 2 ϵ + ( σ + 4 ) ϵ 2 3 J 3 2 σ 2 2 ϵ 3 J 2 2 J 3 ( σ ( ( σ 1 ) σ + 4 ) + 11 ) + σ 2 2 ϵ + 2 ϵ 3 ,
(A17) g 3 ( 7 ) = 6 J 1 J 2 5 ( σ + 2 ) + J 2 3 J 3 2 ( σ ( ( σ 1 ) σ + 4 ) + 11 ) 4 J 3 ( σ + 2 ) 2 ϵ + ( σ + 4 ) ϵ 2 + J 3 J 2 J 3 3 5 σ 2 11 + 2 J 3 σ ϵ 2 4 J 3 2 ( σ + 2 ) 2 ϵ 4 ϵ 3 + J 2 2 J 3 3 ( σ ( ( σ 1 ) σ + 4 ) + 11 ) + 2 J 3 σ ϵ 2 + 2 J 3 2 ( σ ( σ + 6 ) + 6 ) ϵ + ϵ 3 + J 2 4 J 3 5 σ 2 11 + ( 2 σ + 5 ) ϵ + J 3 2 J 3 + ϵ 2 J 3 ( σ + 2 ) + ϵ ,
(A18) g 3 ( 8 ) = 3 J 1 2 J 2 4 ( σ ( 7 σ + 10 ) 1 ) + 2 J 2 2 J 3 2 ( σ ( σ ( 4 σ + 3 ) + 18 ) + 33 ) 2 J 3 ( σ ( σ + 6 ) + 6 ) ϵ + 2 ( 2 σ + 3 ) ϵ 2 + J 3 J 3 3 ( σ ( 7 σ + 10 ) 1 ) + 4 J 3 ( 2 σ + 3 ) ϵ 2 2 J 3 2 σ 2 2 ϵ 2 ϵ 3 2 J 2 J 3 3 ( σ ( ( σ 1 ) σ + 4 ) + 11 ) + 2 J 3 σ ϵ 2 + 2 J 3 2 ( σ ( σ + 6 ) + 6 ) ϵ + ϵ 3 2 J 2 3 J 3 ( σ ( ( σ 1 ) σ + 4 ) + 11 ) + σ 2 2 ϵ .

For statistical considerations parts of the phase space with zero measure can be neglected (but note that the dos may diverge for states with aperiodic motion according to (48)). Hence we can restrict ourselves to the “generic case” where certain exceptions are excluded, see [11]. In this generic case the polynomial Π(x) will have three real simple roots x1 < x2 < x3 satisfying x1 + x2 + x3 = 0 and Π(x) > 0 for x1 < x < x2. The explicit form of the roots is known but of overwhelming complexity if expressed in terms of the physical parameters ɛ, σ, J1, J2, J3.

It follows [11] that in the generic case (A5) has the solution

(A19) x ( t ) = t + t 0 ; g 2 , g 3 ,

with the above-mentioned parameters g2, g3 and the imaginary parameter t0 can be expressed through an elliptical integral:

(A20) t 0 i x 2 x 3 d x 4 x 3 g 2 x g 3 = i x 1 d x 4 x 3 g 2 x g 3 = i x 3 x 1 K x 3 x 2 x 3 x 1 ,

see [[30], 23.6.34-35] and [[40], 17.4.61 ff]. Moreover, this solution will be T -periodic where

(A21) T 2 = x 1 x 2 d x 4 x 3 g 2 x g 3 = x 3 d x 4 x 3 g 2 x g 3 = 1 x 3 x 1 K x 2 x 1 x 3 x 1 .

Hence, for given coupling constants J1, J2, J3, the period T can be viewed as a function T ( σ , ε ) although the explicit form of this function is too complicated to be reproduced here.

Appendix B: Distribution of random variables with a saddle point

We will prove the following proposition which is tailored to its application in Section 7.2.2 and not formulated as general as possible:

Proposition 1

Let Z R 2 be an open bounded domain and φ : Z R + a continuous probability distribution. Further, let f : Z R be a smooth function (“random variable”) with a saddle point z 0 Z such that φ(z0) > 0. Let ρ f : R R + be the corresponding probability distribution, i.e., satisfying

(B1) u 1 u 2 ρ f ( u ) d u = Z ( f ; u 1 , u 2 ) φ ( z ) d z

for all u 1 < u 2 R and

(B2) Z ( f ; u 1 , u 2 ) { z Z | u 1 f ( z ) u 2 } .

Then ρ f has a logarithmic singuarity at u = u 0 f z 0 .

Proof

Without loss of generality we may assume u 0 = f z 0 = 0 . Then there exist local coordinates x, y in a neighborhood of z0 such that z0 has the coordinates (0, 0) and f(x, y) = x2y2 or, after a rotation with π/4, f(x, y) = x y for, say, |x|, |y| ≤ R and some R > 0. Consider an arbitrary ϵ > 0 and choose u2 = −u1 = ϵ such that

(B3) p ( ϵ ) ϵ ϵ ρ f ( u ) d u = Z ( f ; ϵ , ϵ ) φ ( z ) d z H ( ϵ ) φ ( x , y ) d x d y ,

where H(ϵ) is the hyperbolic region

(B4) H ( ϵ ) { ( x , y ) R 2 | x | , | y | R ,  and  x y ϵ } ,

see Figure 16. By assumption, φ(0, 0) > 0 and, since φ is continuous, we may choose R > 0 so small such that

(B5) φ ( x , y ) c > 0 for all  ( x , y ) H ( ϵ ) .

This implies

(B6) p ( ϵ ) ( B 3 ) H ( ϵ ) φ ( x , y ) d x d y c H ( ϵ ) ,

where H ( ϵ ) denotes the area of H(ϵ) given by

(B7) H ( ϵ ) = 4 ϵ R R + ϵ / R R ϵ x d x = 4 ϵ ϵ log ϵ + 2 ϵ log R ,

see Figure 16. If uρ f (u) would be continuous in a neighborhood of u = 0 then it would follow that

(B8) ρ f ( 0 ) = ( B 3 ) lim ϵ 0 p ( ϵ ) 2 ϵ ( B 6 , B 7 ) lim ϵ 0 2 c 1 log ϵ + 2 log R ,

which is a contradiction due to the divergence of −log ϵ. Hence ρ f (0) is divergent and the singularity is, at least, of logarithmic order.

The singularity is exactly of logarithmic order since the contribution to ρ f (0) from other possible zeroes f z ν = 0 except the considered saddle point at z0 would be of order O(1) for regular zeroes, or of order O(ϵ) for local maxima or minima, or of order O(log ϵ) for other saddle points.□

Figure 16: 
Plot of the hyperbolic domain H(ϵ) given by |x y| ≤ ϵ and |x|, |y| ≤ R. The area of the intersection of H(ϵ) with the positive quadrant is given by 




ϵ


R


R
+


∫


ϵ
/
R


R




ϵ


x



d
x

$\frac{{\epsilon}}{R}R+{\int }_{{\epsilon}/R}^{R}\frac{{\epsilon}}{x}\,\mathrm{d}x$


.
Figure 16:

Plot of the hyperbolic domain H(ϵ) given by |x y| ≤ ϵ and |x|, |y| ≤ R. The area of the intersection of H(ϵ) with the positive quadrant is given by ϵ R R + ϵ / R R ϵ x d x .

Appendix C: Asymptotic expansions of Fourier integrals involving logarithmic singularities

We consider the case of a distribution function ρ(ω) with a logarithmic singularity at ω = ω0 and will investigate the decay of the corresponding Fourier transform ρ ̂ ( t ) for t → ∞. More specifically, we assume that ρ(ω) is of the form

(C1) ρ ( ω ) = ϕ ( ω ) log ω ω 0 ,

where ϕ(ω) is N times continuously differentiable for γ1 < ω < γ2 and γ1 < ω0 < γ2. For our purposes we may assume that ϕ(ω) is a real function. Then we consider the Fourier integral

(C2) ρ ̂ ( t ) = γ 1 γ 2 ϕ ( ω ) log ω ω 0 exp ( i ω t ) d ω ,

and the asymptotic expansion of ρ ̂ ( t ) for t → ∞. This problem has been solved in [[41], Th. 4] for the one-sided Fourier integral

(C3) A = ω 0 γ 2 ϕ ( ω ) log ω ω 0 exp ( i ω t ) d ω .

We will utilize this solution to obtain the asymptotic expansion for the two-sided Fourier integral (C2). For this purpose, we will quote the corresponding theorem 4 of [41] in full detail, with slight modifications according to our notation.

Proposition 2

(Erdélyi). Under the preceding assumptions on ϕ(ω) we have

(C4) A = n = 0 N 1 i n + 1 ϕ ( n ) ( ω 0 ) ψ ( n + 1 ) log t + i π 2 t n 1 × exp i ω 0 t + o t N ,

for t → +∞, where ψ(z) denotes the logarithmic derivative of Γ(z).

Let us denote the complementary integral of (C3) by

(C5) A ̃ = γ 1 ω 0 ϕ ( ω ) log ω ω 0 exp ( i ω t ) d ω ,

such that ρ ̂ ( t ) = A + A ̃ and denote complex conjugation by an overline. Then

(C6) A ̃ ̄ = γ 1 ω 0 ϕ ( ω ) log ω ω 0 exp ( i ω t ) d ω ̄
(C7) = γ 1 ω 0 ϕ ( ω ) log ω ω 0 exp ( i ω t ) d ω ̄
(C8) = ω 0 γ 1 ϕ ( ω ) log ω ω 0 exp ( i ω t ) d ω ,

where we have used that ϕ(ω) is real. This form of A ̃ ̄ is suited for the application of Proposition 2. Using the abbreviation ϕ ( ω ) = ϕ ̃ ( ω ) which yields

(C9) ϕ ̃ ( n ) ω 0 = 1 n ϕ ( n ) ω 0 d ω

we thus obtain from (C4) and the replacement ω0↦ −ω0

(C10) A ̃ ̄ = n = 0 N 1 i n + 1 ϕ ̃ ( n ) ( ω 0 ) ψ ( n + 1 ) log t + i π 2 t n 1 × exp i ω 0 t + o t N .

This entails

(C11) A ̃ = ( C 9 ) n = 0 N 1 i n + 1 ( 1 ) n ϕ ( n ) ( ω 0 ) × ψ ( n + 1 ) log t i π 2 t n 1 exp i ω 0 t + o t N
(C12) = n = 0 N 1 i n + 1 ϕ ( n ) ( ω 0 ) ψ ( n + 1 ) log t i π 2 t n 1 × exp i ω 0 t + o t N ,

and, finally,

(C13) ρ ̂ ( t ) = A + A ̃ = π n = 0 N 1 i n ϕ ( n ) ω 0 t n 1 × exp i ω 0 t + o t N .

We note that the terms containing log t cancel and the leading term corresponding to n = 0 in the asymptotic expansion (C13) is proportional to 1/t.

References

[1] E. H. Lieb, “The classical limit of quantum spin systems,” Commun. Math. Phys., vol. 31, pp. 327–340, 1973. https://doi.org/10.1007/bf01646493.Suche in Google Scholar

[2] J. Fröhlich, A. Knowles, and E. Lenzmann, “Semi-classical dynamics in quantum spin systems,” Lett. Math. Phys., vol. 82, pp. 275–296, 2007. https://doi.org/10.1007/s11005-007-0202-y.Suche in Google Scholar

[3] P. Pyykkö, “Magically magnetic gadolinium,” Nat. Chem., vol. 7, p. 680, 2015. https://doi.org/10.1038/nchem.2287.Suche in Google Scholar PubMed

[4] K. B. Ghiassi, M. M. Olmstead, and A. L. Balch, “Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents,” Dalton Trans., vol. 43, pp. 7346–7358, 2014. https://doi.org/10.1039/c3dt53517g.Suche in Google Scholar PubMed

[5] L. Qin, G.-J. Zhou, Y.-Z. Yu, et al.., “Topological self-assembly of highly-symmetric lanthanide clusters: a magnetic study of exchange- coupling “fingerprints” in giant gadolinium(III) cages,” J. Am. Chem. Soc., vol. 45, pp. 16405–16411, 2017. https://doi.org/10.1021/jacs.7b09996.Suche in Google Scholar PubMed

[6] L. Qin, H.-L. Zhang, Y.-Q. Zhai, et al.., “A giant spin molecule with ninety-six parallel unpaired electrons,” iScience, vol. 24, no. 4, p. 102350, 2021. https://doi.org/10.1016/j.isci.2021.102350.Suche in Google Scholar PubMed PubMed Central

[7] H.-J. Schmidt, A. Lohmann, and J. Richter, “Eighth-order high-temperature expansion for general Heisenberg Hamiltonians,” Phys. Rev. B, vol. 84, p. 104443, 2011. https://doi.org/10.1103/physrevb.84.104443.Suche in Google Scholar

[8] G. M. Wysin, Magnetic Excitations and Geometric Confinement, Bristol, England, IOP Publishing, 2015.10.1088/978-0-7503-1074-1Suche in Google Scholar

[9] A. K. Boudalis, G. Rogez, and P. Turek, “Determination of the distributions of the spin-Hamiltonian parameters in spin triangles: a combined magnetic susceptometry and electron paramagnetic resonance spectroscopic study of the highly symmetric [Cr3O(PhCOO)6(py)3](ClO4)·0.5py,” Inorg. Chem., vol. 57, pp. 13259–13269, 2018. https://doi.org/10.1021/acs.inorgchem.8b01764.Suche in Google Scholar PubMed

[10] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, Berlin, Springer, 1978.10.1007/978-1-4757-1693-1Suche in Google Scholar

[11] H.-J. Schmidt, The Classical Spin Triangle as an Integrable System. Preprint math-ph:2109.04841, 2021.Suche in Google Scholar

[12] H.-J. Schmidt, “The general spin triangle,” Int. J. Mod. Phys. B, vol. 278, no. 16, p. 1350064, 2013. https://doi.org/10.1142/s0217979213500641.Suche in Google Scholar

[13] H.-J. Schmidt, C. Schröder, E. Hägele, and M. Luban, “Dynamics and thermodynamics of a pair of interacting dipoles,” J. Phys. Math. Theor., vol. 48, p. 185002, 2015. https://doi.org/10.1088/1751-8113/48/18/185002.Suche in Google Scholar

[14] J. H. Luscombe, M. Luban, and F. Borsa, “Classical Heisenberg model of magnetic molecular ring clusters: accurate approximants for correlation functions and susceptibility,” J. Chem. Phys., vol. 108, no. 17, pp. 7266–7273, 1998. https://doi.org/10.1063/1.476144.Suche in Google Scholar

[15] O. Ciftja, M. Luban, M. Auslender, and J. H. Luscombe, “Equation of state and spin-correlation functions of ultrasmall classical Heisenberg magnets,” Phys. Rev. B, vol. 60, no. 14, pp. 10122–10133, 1999. https://doi.org/10.1103/physrevb.60.10122.Suche in Google Scholar

[16] D. Mentrup, J. Schnack, and M. Luban, “Spin dynamics of quantum and classical Heisenberg dimers,” Physica A, vol. 272, pp. 153–161, 1999. https://doi.org/10.1016/s0378-4371(99)00239-3.Suche in Google Scholar

[17] D. Mentrup, H.-J. Schmidt, J. Schnack, and M. Luban, “Transition from quantum to classical Heisenberg trimers: thermodynamics and time correlation functions,” Physica A, vol. 278, pp. 214–221, 2000. https://doi.org/10.1016/s0378-4371(99)00571-3.Suche in Google Scholar

[18] O. Ciftja, “Spin correlation functions of some frustrated ultra-small classical Heisenberg clusters,” Physica A, vol. 268, pp. 541–557, 2000. https://doi.org/10.1016/s0378-4371(00)00326-5.Suche in Google Scholar

[19] M. Ameduri and R. A. Klemm, “Time correlation functions of three classical Heisenberg spins on an isosceles triangle and on a chain,” Phys. Rev. B, vol. 66, p. 224404, 2002. https://doi.org/10.1103/physrevb.66.224404.Suche in Google Scholar

[20] O. Ciftja, “Spin dynamics of an ultra-small nanoscale molecular magnet,” Nanoscale Res. Lett., vol. 2, pp. 168–174, 2007. https://doi.org/10.1007/s11671-007-9049-5.Suche in Google Scholar

[21] O. Ciftja, “Exact classical spin dynamics of high spin nanoscale molecular magnetic clusters,” Phys. Lett. A, vol. 424, p. 127826, 2022. https://doi.org/10.1016/j.physleta.2021.127826.Suche in Google Scholar

[22] F. Borsa and M. Mali, “Experimental study of high-temperature spin dynamics in one-dimensional Heisenberg paramagnets,” J. Phys. B, vol. 8, no. 5, pp. 2215–2219, 1974. https://doi.org/10.1103/physrevb.9.2215.Suche in Google Scholar

[23] H. Takano and S. Miyashita, “Relaxation of the spin autocorrelation function in the kinetic ising model with bond dilution,” J. Phys. Soc. Jpn, vol. 58, pp. 3871–3874, 1989. https://doi.org/10.1143/jpsj.58.3871.Suche in Google Scholar

[24] A. Lascialfari, Z. H. Jang, F. Borsa, D. Gatteschi, A. Cornia, “Comparison of the spin dynamics in different types of molecular magnetic rings from 1H NMR,” J. Appl. Phys., vol. 83, no. 11, pp. 6946–6948, 1989.10.1063/1.367564Suche in Google Scholar

[25] M. L. Baker, T. Guidi, S. Carretta, et al.., “Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering,” Nat. Phys., vol. 8, no. 12, pp. 906–911, 2012. https://doi.org/10.1038/nphys2431.Suche in Google Scholar

[26] R. A. Klemm and M. Luban, “Zero-field time correlation functions of four classical Heisenberg spins on a ring,” Phys. Rev. B, vol. 64, p. 104424, 2001. https://doi.org/10.1103/physrevb.64.104424.Suche in Google Scholar

[27] H.-J. Schmidt and M. Luban, “Classical ground states of symmetric Heisenberg spin systems,” J. Phys. Math. Gen., vol. 36, no. 23, p. 6351, 2003. https://doi.org/10.1088/0305-4470/36/23/306.Suche in Google Scholar

[28] H.-J. Schmidt, Theory of Ground States For Classical Heisenberg Spin Systems I. Preprint cond-mat:1701.02489v2, 2017.Suche in Google Scholar

[29] H.-J. Schmidt, Theory of Ground States For Classical Heisenberg Spin Systems III. Preprint cond-mat:1707.06512, 2017.Suche in Google Scholar

[30] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, et al.., Eds. NIST Digital Library of Mathematical Functions. 2021. Available at: http://dlmf.nist.gov/. Release 1.1.1 of 2021-03-15.Suche in Google Scholar

[31] J. Schnack, “Effects of frustration on magnetic molecules: a survey from Olivier Kahn until today,” Dalton Trans., vol. 39, pp. 4677–4686, 2010. https://doi.org/10.1039/b925358k.Suche in Google Scholar PubMed

[32] F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett., vol. 86, pp. 2050–2053, 2001. https://doi.org/10.1103/physrevlett.86.2050.Suche in Google Scholar

[33] T. Nakanishi and S. Yamamoto, “Intrinsic double-peak structure of the specific heat in low-dimensional quantum ferrimagnets,” Phys. Rev. B, vol. 65, p. 214418, 2002. https://doi.org/10.1103/physrevb.65.214418.Suche in Google Scholar

[34] M. de Souza, R. Paupitz, A. Seridonio, and R. E. Lagos, “Specific heat anomalies in solids described by a multilevel model,” Braz. J. Phys., vol. 46, pp. 206–212, 2016. https://doi.org/10.1007/s13538-016-0404-9.Suche in Google Scholar

[35] K. Karl’ová, J. Strečka, and T. Madaras, “The Schottky-type specific heat as an indicator of relative degeneracy between ground and first-excited states: the case study of regular Ising polyhedra,” Phys. B Condens. Matter, vol. 488, pp. 49–56, 2016.10.1016/j.physb.2016.01.033Suche in Google Scholar

[36] N. Wiener, “Generalized harmonic analysis,” Acta Math., vol. 55, pp. 117–258, 1930. https://doi.org/10.1007/bf02546511.Suche in Google Scholar

[37] A. Khintchine, “Korrelationstheorie der stationären stochastischen Prozesse,” Math. Ann., vol. 109, no. 1, pp. 604–615, 1934. https://doi.org/10.1007/bf01449156.Suche in Google Scholar

[38] M. Luban and J. H. Luscombe, “Equilibrium time correlation functions and the dynamics of fluctuations,” Am. J. Phys., vol. 67, pp. 1161–1169, 1999. https://doi.org/10.1119/1.19102.Suche in Google Scholar

[39] N. Chernov, “Decay of correlations,” Scholarpedia, vol. 3, no. 4, p. 4862, 2008. https://doi.org/10.4249/scholarpedia.4862.Suche in Google Scholar

[40] M. Abramowitz and I. A. Stegun, Eds. Handbook of Mathematical Functions, New York, Dover, 1972.Suche in Google Scholar

[41] A. Erdélyi, “Asymptotic expansions of Fourier integrals involving logarithmic singularities,” J. Soc. Ind. Appl. Math., vol. 4, no. 1, pp. 38–47, 1956. https://doi.org/10.1137/0104003.Suche in Google Scholar

Received: 2022-02-04
Revised: 2022-03-21
Accepted: 2022-03-29
Published Online: 2022-04-13
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2022-0034/html
Button zum nach oben scrollen