Abstract
The nonlinear propagation of dust-ion-acoustic shock waves (DIASWs) in unmagnetized dusty plasma comprising inertial ions, non-Maxwellian electrons with two distinct temperatures, and negatively charged dust is investigated in this article using a different approach based on the Sagdeev pseudopotential theory. The reductive perturbation approach is used to produce the KdVB and mKdVB equations and a comparison of their analytical and numerical solutions is shown. The effects of various parameters consisting of macroscopic non-thermal, ion-kinematic viscosity, etc. that significantly alternate the qualitative properties of DIASW are discussed. Both oscillatory and monotonic natures of the dispersive-diffusive shock wave structures are described in the present study. It has also been concentrated on nonlinear dynamics in such a plasma environment. The findings of this study should aid in understanding the nonlinear dynamics of wave damping and interactions in space and laboratory dusty plasmas, where the most relevant plasma parameters are kinematic viscosity and macroscopic non-thermality.
Funding source: Council of Scientific and Industrial Research, India
Award Identifier / Grant number: 03(1471)19/EMR-II
Acknowledgement
Authors are grateful to the Council of Scienctific and Industrial Research, Department of Science and Technology, Govt. of India, for funding this research (CSIR Project Number - 03(1471)/19/EMR-II). Authors are also grateful to Dr. Biswajit Sahu for his encouragement to work on problem concerned with plasma.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] A. Barkan, N. D’Angelo, and R. L. Merlino, “Experiments on ion-acoustic waves in dusty plasmas,” Planet. Space Sci., vol. 44, p. 239, 1996. https://doi.org/10.1016/0032-0633(95)00109-3.Search in Google Scholar
[2] R. L. Merlino and J. Goree, “Dusty plasmas in the laboratory, industry, and space,” Phys. Today, vol. 7, p. 32, 2004. https://doi.org/10.1063/1.1784300.Search in Google Scholar
[3] A. A. Mamun and P. K. Shukla, “Solitary potentials in cometary dusty plasmas,” Geophys. Res. Lett., vol. 29, p. 1874, 2002. https://doi.org/10.1029/2002gl015219.Search in Google Scholar
[4] P. K. Shukla and M. Rosenberg, “Boundary effects on dust-ion-acoustic and dust-acoustic waves in collisional dusty plasmas,” Phys. Plasmas, vol. 6, p. 1038, 1999. https://doi.org/10.1063/1.873345.Search in Google Scholar
[5] P. K. Shukla, “A survey of dusty plasma physics,” Phys. Plasmas, vol. 8, p. 1791, 2001. https://doi.org/10.1063/1.1343087.Search in Google Scholar
[6] P. K. Shukla, M. Y. Yu, and R. Bharuthram, “Linear and nonlinear dust drift waves,” J. Geophys. Res., vol. 96, p. 21343, 1991. https://doi.org/10.1029/91ja02331.Search in Google Scholar
[7] A. A. Mamun, “Effects of adiabaticity of electrons and ions on dust-ion-acoustic solitary waves,” Phys. Lett., vol. 372, p. 1490, 2008. https://doi.org/10.1016/j.physleta.2007.10.003.Search in Google Scholar
[8] H. Alinejad, “Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons,” Astrophys. Space Sci., vol. 327, p. 131, 2010. https://doi.org/10.1007/s10509-010-0296-z.Search in Google Scholar
[9] H. Alinejad, “Dust ion-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and flat-trapped electrons,” Astrophys. Space Sci., vol. 334, p. 331, 2011. https://doi.org/10.1007/s10509-011-0719-5.Search in Google Scholar
[10] A. A. Mamun, N. Jahan, and P. K. Shukla, “DIA and DA solitary waves in adiabatic dusty plasmas,” J. Plasma Phys., vol. 75, p. 413, 2009. https://doi.org/10.1017/s0022377808007721.Search in Google Scholar
[11] O. Rahman and A. A. Mamun, “Dust-ion-acoustic solitary waves in dusty plasma with arbitrarily charged dust and vortex-like electron distribution,” Phys. Plasmas, vol. 18, p. 083703, 2011. https://doi.org/10.1063/1.3610546.Search in Google Scholar
[12] F. Sayeed and A. A. Mamun, “Solitary potential in a four-component dusty plasma,” Phys. Plasmas, vol. 14, p. 014501, 2007. https://doi.org/10.1063/1.2408401.Search in Google Scholar
[13] M. M. Masud, M. Asaduzzaman, and A. A. Mamun, “Dust-ion-acoustic shock waves in a two-electron-temperature dusty plasma,” J. Plasma Phys., vol. 79, no. 2, p. 215, 2013. https://doi.org/10.1017/s0022377812000852.Search in Google Scholar
[14] Q. Z. Luo, N. D’Angelo, and R. L. Merlino, “Ion acoustic shock formation in a converging magnetic field geometry,” Phys. Plasmas, vol. 7, p. 2370, 2000. https://doi.org/10.1063/1.874074.Search in Google Scholar
[15] A. A. Mamun and P. K. Shukla, “Electrostatic solitary and shock structures in dusty plasmas,” Phys. Scripta, vol. T98, p. 107, 2002. https://doi.org/10.1238/physica.topical.098a00107.Search in Google Scholar
[16] S. Sultana, G. Sarri, and I. Kourakis, “Electrostatic shock dynamics in superthermal plasmas,” Phys. Plasmas, vol. 19, p. 012310, 2012. https://doi.org/10.1063/1.3677265.Search in Google Scholar
[17] M. Shahmansouri and A. A. Mamun, “Oblique ion acoustic shock waves in a magnetized plasma,” Phys. Plasmas, vol. 20, p. 082122, 2013. https://doi.org/10.1063/1.4818492.Search in Google Scholar
[18] H. R. Pakzad, “Effect of q-nonextensive distribution of electrons on dust acoustic shock waves in strongly coupled dusty plasmas,” Can. J. Phys., vol. 89, p. 1073, 2011. https://doi.org/10.1139/p11-103.Search in Google Scholar
[19] P. K. Shukla, “Nonlinear waves and structures in dusty plasmas,” Phys. Plasmas, vol. 10, p. 1619, 2003. https://doi.org/10.1063/1.1557071.Search in Google Scholar
[20] F. Verheest, Waves in Dusty Space Plasmas, Dordrecht, Kluwer, 2000.10.1007/978-94-010-9945-5Search in Google Scholar
[21] Y. Nakamura, H. Bailung, and P. K. Shukla, “Observation of ion-acoustic shocks in a dusty plasma,” Phys. Rev. Lett., vol. 83, p. 1602, 1999. https://doi.org/10.1103/physrevlett.83.1602.Search in Google Scholar
[22] Y. Nakamura, “Experiments on ion-acoustic shock waves in a dusty plasma,” Phys. Plasmas, vol. 9, p. 440, 2002. https://doi.org/10.1063/1.1431974.Search in Google Scholar
[23] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol, IOP Publishing, 2002.10.1887/075030653XSearch in Google Scholar
[24] Q. Z. Luo, N. D’Angelo, and R. L. Merlino, “Experimental study of shock formation in a dusty plasma,” Phys. Plasmas, vol. 6, p. 3455, 1999. https://doi.org/10.1063/1.873605.Search in Google Scholar
[25] P. K. Shukla, “Dust ion-acoustic shocks and holes,” Phys. Plasmas, vol. 7, p. 1044, 2000. https://doi.org/10.1063/1.873905.Search in Google Scholar
[26] S. I. Popel, A. A. Gisko, A. P. Golub, T. V. Losseva, R. Bingham, and P. K. Shukla, “Shock waves in charge-varying dusty plasmas and the effect of electromagnetic radiation,” Phys. Plasmas, vol. 7, p. 2410, 2000. https://doi.org/10.1063/1.874079.Search in Google Scholar
[27] B. Eliasson and P. K. Shukla, “Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas,” Phys. Plasmas, vol. 12, p. 024502, 2005. https://doi.org/10.1063/1.1848108.Search in Google Scholar
[28] N. R. Kundu, M. M. Masud, K. S. Ashrafi, and A. A. Mamun, “Dust-ion-acoustic solitary waves and their multi-dimensional instability in a magnetized nonthermal dusty electronegative plasma,” Astrophys. Space Sci., vol. 343, p. 279, 2012. https://doi.org/10.1007/s10509-012-1223-2.Search in Google Scholar
[29] B. Sahu, A. Sinha, and R. Roychoudhury, “Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma,” Phys. Plasmas, vol. 21, p. 103701, 2014. https://doi.org/10.1063/1.4896710.Search in Google Scholar
[30] Y. I. Chutov, O. Y. Kravchenko, A. F. Pshenychnyj, et al.., “Self-consistent dusty sheaths in plasmas with two-temperature electrons,” Phys. Plasmas, vol. 10, p. 546, 2003. https://doi.org/10.1063/1.1540096.Search in Google Scholar
[31]] W. M. Moslem and W. F. El-Taibany, “Ëffect of two-temperature trapped electrons to nonlinear dust-ion-acoustic solitons,” Phys. Plasmas, vol. 12, p. 122309, 2005. https://doi.org/10.1063/1.2146940.Search in Google Scholar
[32] M. Arham, S. A. Khan, and M. Khan, “Weak dissipation of electrostatic solitary structures in warm collisional pair-ion plasmas with non-Maxwellian electron population,” Chinese. J. Phys., vol. 69, p. 77, 2021. https://doi.org/10.1016/j.cjph.2020.10.028.Search in Google Scholar
[33] Z. Ehsan, M. M. Abbasi, S. Ghosh, M. Khan, and M. Ali, “Shock wave in a rotating non-Maxwellian viscous dusty plasma,” Contrib. Plasma Phys., vol. 60, p. e202000030, 2020. https://doi.org/10.1002/ctpp.202000030.Search in Google Scholar
[34] M. Kamran, F. Sattar, M. Khan, R. Khan, and M. Ikram, “Dust-ion-acoustic shock waves in the presence of dust charge fluctuation in non-Maxwellian plasmas,” Res. Phys., vol. 21, p. 103808, 2021. https://doi.org/10.1016/j.rinp.2020.103808.Search in Google Scholar
[35] R. A. Cairns, A. A. Mamun, R. Bingham, et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, p. 2709, 1995. https://doi.org/10.1029/95gl02781.Search in Google Scholar
[36] G. A. El, M. A. Hoefer, and M. Shearer, “Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws,” SIAM Rev., vol. 59, p. 3, 2017. https://doi.org/10.1137/15m1015650.Search in Google Scholar
[37] J. Goswami, S. Chandra, and B. Ghosh, “Shock waves and the formation of solitary structures in electron acoustic wave in inner magnetosphere plasma with relativistically degenerate particles,” Astrophys. Space Sci., vol. 364, p. 65, 2019. https://doi.org/10.1007/s10509-019-3555-7.Search in Google Scholar
[38] M. Akbari-Moghanjoughi, “Generalized Sagdeev potential theory for shock waves modeling,” Phys. Plasmas, vol. 24, p. 052302, 2017. https://doi.org/10.1063/1.4981781.Search in Google Scholar
[39] E. V. Krishnan, Q. Zhou, and A. Biswas, “Solitons and shock waves to Zakharov–Kuznetsov equation with dual-power-law nonlinearity in plasmas,” Proc. Rom. Acad., vol. 17, p. 137, 2016.Search in Google Scholar
[40] A. Alinejad, “Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons,” Astrophys. Space Sci., vol. 327, p. 131, 2010. https://doi.org/10.1007/s10509-010-0296-z.Search in Google Scholar
[41] I. Kourakis, S. Sultana, and F. Verheest, “Note on the single-shock solutions of the Korteweg–de Vries–Burgers equation,” Astrophys. Space Sci., vol. 338, p. 245, 2012. https://doi.org/10.1007/s10509-011-0958-5.Search in Google Scholar
[42] L. L. Tao and W. S. Duao, “Effects of the dust size distribution on shock waves in dusty plasma,” Chinese .J Phys., vol. 68, p. 950, 2020. https://doi.org/10.1016/j.cjph.2020.10.031.Search in Google Scholar
[43] S. Roy, S. Raut, and R. R. Kairi, “Nonlinear analysis of the ion-acoustic solitary and shock wave solutions for non-extensive dusty plasma in the framework of modified Korteweg–de Vries–Burgers equation,” Pramana – J. Phys., vol. 96, p. 67, 2022. https://doi.org/10.1007/s12043-022-02302-5.Search in Google Scholar
[44] A. Shah and R. Saeed, “Ion acoustic shock waves in a relativistic electron–positron–ion plasmas,” Phys. Lett., vol. 373, p. 4164, 2009. https://doi.org/10.1016/j.physleta.2009.09.028.Search in Google Scholar
[45] M. Akbari-Moghanjoughi, “Generalized Sagdeev approach to nonlinear plasma excitations,” Phys. Plasmas, vol. 24, p. 022311, 2017. https://doi.org/10.1063/1.4977527.Search in Google Scholar
[46] B. Azarvand-Hassanfard, A. Esfandyari-Kalejahi, and M. Akbari-Moghanjoughi, “Generation of dispersive shock waves in nonextensive plasmas,” Can. J. Phys., vol. 96, p. 1063, 2017. https://doi.org/10.1139/cjp-2017-0589.Search in Google Scholar
[47] A. N. Dev, J. Sarma, and M. K. Deka, “Dust acoustic shock waves in arbitrarily charged dusty plasma with low and high temperature non-thermal ions,” Can. J. Phys., vol. 93, p. 1030, 2015. https://doi.org/10.1139/cjp-2014-0391.Search in Google Scholar
[48] P. K. Shukla and A. A. Mamun, “Dust-acoustic shocks in a strongly coupled dusty plasma,” IEEE Trans. Plasma Sci., vol. 29, p. 221, 2001. https://doi.org/10.1109/27.923698.Search in Google Scholar
[49] J. K. Xue, “Cylindrical and spherical dust–ion acoustic shock waves,” Phys. Plasmas, vol. 10, p. 4893, 2003. https://doi.org/10.1063/1.1622954.Search in Google Scholar
[50] B. Sahu and M. Tribeche, “Nonextensive dust acoustic solitary and shock waves in nonplanar geometry,” Astrophys. Space Sci., vol. 338, p. 259, 2012. https://doi.org/10.1007/s10509-011-0941-1.Search in Google Scholar
[51] M. Tribeche and M. Bacha, “Dust-acoustic shock waves in a charge varying electronegative magnetized dusty plasma with nonthermal ions: application to Halley Comet plasma,” Phys. Plasmas, vol. 20, p. 103704, 2013. https://doi.org/10.1063/1.4825240.Search in Google Scholar
[52] A. S. M. Moinuddin, M. S. Alam, and M. R. Talukdar, “Nonlinear interaction phenomenon of dust acoustic solitary and shock waves in dusty plasma,” Contrib. Plasma Phys., vol. 60, p. 124, 2020. https://doi.org/10.1002/ctpp.201900124.Search in Google Scholar
[53] G. Hameed, U. Zakir, Q. Haque, M. Rehan, and F. Hadi, “Dust acoustic nonlinear waves in pair-ion-electron superthermal plasma,” Chinese .J Phys., vol. 71, p. 466, 2021. https://doi.org/10.1016/j.cjph.2021.03.015.Search in Google Scholar
[54] A. Abdikian and S. Sultana, “Dust-acoustic solitary and cnoidal waves in a dense magnetized dusty plasma with temperature degenerate trapped electrons and nonthermal ions,” Phys. Scripta, vol. 96, p. 095602, 2021. https://doi.org/10.1088/1402-4896/ac04db.Search in Google Scholar
[55] A. Abdikian, J. Tamang, and A. Saha, “Supernonlinear wave and multistability in magneto-rotating plasma with (r, q) distributed electrons,” Phys. Scripta, vol. 96, p. 095605, 2021. https://doi.org/10.1088/1402-4896/ac07b7.Search in Google Scholar
[56] A. Abdikian, J. Tamang, and A. Saha, “Investigation of supernonlinear and nonlinear ion-acoustic waves in a magnetized electron-ion plasma with generalized (r, q) distributed electrons,” Waves Random Complex, pp. 1–22, 2021. https://doi.org/10.1080/17455030.2021.1965242.Search in Google Scholar
[57] A. A. Mamun and P. K. Shukla, “Electron-acoustic solitary waves via vortex electron distribution,” J. Geophys. Res., vol. 107, p. 1135, 2002. https://doi.org/10.1029/2001ja009131.Search in Google Scholar
[58] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Washington, Elsevier, 2004.Search in Google Scholar
[59] K. Nozaki and N. Bekki, “Chaos in a perturbed nonlinear Schrödinger equation,” Phys. Rev. Lett., vol. 50, p. 1226, 1983. https://doi.org/10.1103/physrevlett.50.1226.Search in Google Scholar
[60] D. J. Zheng, W. J. Yeh, and O. G. Symko, “Period doubling in a perturbed sine-Gordon system, a long Josephson junction,” Phys. Lett., vol. 140, p. 225, 1989. https://doi.org/10.1016/0375-9601(89)90927-4.Search in Google Scholar
[61] G. P. Williams, Chaos Theory Tamed, Washington, Joseph Henry, 1997.10.1201/9781482295412Search in Google Scholar
[62] A. Sen, S. Tiwari, S. Mishra, and Kaw, “Nonlinear wave excitations by orbiting charged space debris objects,” Adv. Space Res., vol. 56, no. 3, p. 429, 2015. https://doi.org/10.1016/j.asr.2015.03.021.Search in Google Scholar
[63] V. S. Aslanov and V. V. Yudintsev, “Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages,” Adv. Space Res., vol. 55, p. 660, 2015. https://doi.org/10.1016/j.asr.2014.10.034.Search in Google Scholar
[64] J. Tamang and A. Saha, “Influence of dust-neutral collisional frequency and nonextensivity on dynamic motion of dust acustic waves,” Waves Random Complex, vol. 31, p. 597, 2019.10.1080/17455030.2019.1605230Search in Google Scholar
[65] A. Abdikian, A. Saha, and S. Alimirzaei, “Bifurcation analysis of ion-acoustic waves in an adiabatic trapped electron and warm ion plasma,” J. Taibah. Univ. Sci., vol. 14, p. 1051, 2020. https://doi.org/10.1080/16583655.2020.1798062.Search in Google Scholar
[66] Z. J. Zhou, H. Y. Wang, and K. B. Zhang, “Dust-acoustic solitary waves in a dusty plasma with two-temperature nonthermal ions,” Pramana – J. Phys., vol. 78, p. 127, 2011. https://doi.org/10.1007/s12043-011-0209-x.Search in Google Scholar
[67] I. Tasnim, M. M. Masud, and A. A. Mamun, “Effects of nonthermal ions of distinct temperatures on dust acoustic shock waves in a dusty plasma,” Astrophys. Space Sci., vol. 343, p. 677, 2013. https://doi.org/10.1007/s10509-012-1275-3.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Qualitative behavior of a discrete predator–prey system under fear effects
- Nonlinear behaviour of ion acoustic shock waves in a two-electron temperature nonthermal complex plasma
- Gravitation & Cosmology
- Study of baryogenesis in the framework of Hořava–Lifshitz cosmology with Starobinsky potential
- Solid State Physics & Materials Science
- Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite solar cell
- Thermodynamics & Statistical Physics
- Thermodynamics of the classical spin triangle
Articles in the same Issue
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Qualitative behavior of a discrete predator–prey system under fear effects
- Nonlinear behaviour of ion acoustic shock waves in a two-electron temperature nonthermal complex plasma
- Gravitation & Cosmology
- Study of baryogenesis in the framework of Hořava–Lifshitz cosmology with Starobinsky potential
- Solid State Physics & Materials Science
- Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite solar cell
- Thermodynamics & Statistical Physics
- Thermodynamics of the classical spin triangle