Abstract
Motivated by the work of Paliathanasis et al. (A. Paliathanasis and G. Leon, “Cosmological solutions in Hořava–Lifshitz scalar field theory,” ZnA, vol. 75, p. 523, 2020), this work reports the baryogenesis in Hořava–Lifshitz cosmology by taking the background evolution as modified Chaplygin gas and modified holographic dark energy. The Starobinsky potential has been selected to initiate the study. The scalar field and its potential have been reconstructed and found to be consistent with the universe’s expansion. The quintessence behaviour of equation of state parameters has been observed for both cases. Finally, baryogenesis has been studied in both cases. The baryon entropy ratio attained the observed value. It is also well explained that either the model will achieve an equal number of baryon and antibaryon densities or will satisfy the Generalized Second Law of Thermodynamics.
Funding source: Council of Scientific and Industrial Research
Award Identifier / Grant number: 03(1420)/18/EMR-II
Acknowledgement
The authors are thankful to the anonymous reviewers for their valuable suggestions. Surajit Chattopadhyay acknowledges financial support from the Council of Scientific and Industrial Research (Government of India) with Grant No. 03(1420)/18/EMR-II.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
A.1 Reconstructed density and pressure for Starobinsky-type potential in HL gravity
Using ϕ and V from Eqs. (23) and (24), respectively, we get ρ ϕ,S and p ϕ,S and the expressions are presented in Eqs. (46) and (47).
and
A.2 MCG and MHDE under the purview of HL gravity
Here, we get reconstructed Hubble parameter H MCG,rec of HL gravity with background evolution as MCG and the reconstructed H is presented in Eq. (48)
Using the density of HL gravity as a background evolution as MHDE ρ
HL,MHDE from Eq. (36) and ρ
ϕ,S
from Eq. (46) in the first Friedmann equation
A.3 Entropy and number density of baryon for MCG and MHDE for baryogenesis in HL gravity
References
[1] N. Azhar, A. Jawad, and S. Rani, “Generalized gravitational baryogenesis of well-known f(T, TG) and f(T, B) models,” Phys. Dark Universe, vol. 30, p. 100724, 2020. https://doi.org/10.1016/j.dark.2020.100724.Search in Google Scholar
[2] R. H. Cyburt, B. D. Fields, K. A. Olive, and T. H. Yeh, “Big bang nucleosynthesis: present status,” Rev. Mod. Phys., vol. 88, no. 1, p. 015004, 2016. https://doi.org/10.1103/revmodphys.88.015004.Search in Google Scholar
[3] B. D. Fields, K. A. Olive, T. H. Yeh, and C. Young, “Big-bang nucleosynthesis after Planck,” JCAP, vol. 03, p. 010, 2020.10.1088/1475-7516/2020/03/010Search in Google Scholar
[4] R. N. Mohapatra and N. Okada, “Affleck-Dine baryogenesis with observable neutron-antineutron oscillation,” Phys. Rev. D, vol. 104, p. 055030, 2021. https://doi.org/10.1103/physrevd.104.055030.Search in Google Scholar
[5] M. Trodden, “Electroweak baryogenesis,” Rev. Mod. Phys., vol. 71, p. 1463, 1999. https://doi.org/10.1103/revmodphys.71.1463.Search in Google Scholar
[6] D. Hooper and G. Krnjaic, “GUT baryogenesis with primordial black holes,” Phys. Rev. D, vol. 103, p. 043504, 2021. https://doi.org/10.1103/physrevd.103.043504.Search in Google Scholar
[7] R. H. Brandenberger and M. Yamaguchi, “Spontaneous baryogenesis in warm inflation,” Phys Rev. D, vol. 68, p. 023505, 2003. https://doi.org/10.1103/physrevd.68.023505.Search in Google Scholar
[8] A. Hook, “Baryogenesis from Hawking radiation,” Phys. Rev. D, vol. 90, p. 083535, 2014. https://doi.org/10.1103/physrevd.90.083535.Search in Google Scholar
[9] A. Kobakhidze and A. Manning, “Cosmological matter-antimatter asymmetry as a quantum fluctuation,” Phys. Rev. D, vol. 91, p. 123529, 2015. https://doi.org/10.1103/physrevd.91.123529.Search in Google Scholar
[10] N. J. Popławski, “Matter-antimatter asymmetry and dark matter from torsion,” Phys. Rev. D, vol. 83, p. 084033, 2011.10.1103/PhysRevD.83.084033Search in Google Scholar
[11] A. G. Reiss, A. V. Filippenko, and P. Challis, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., vol. 116, p. 1009, 1998.10.1086/300499Search in Google Scholar
[12] S. Perlmutter, G. Aldering, G. Goldhaber, et al.., “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astrophys. J., vol. 517, p. 565, 1999.10.1086/307221Search in Google Scholar
[13] P. de Bernardis, P. A. R. Ade, and J. J. Bock, “A flat Universe from high-resolution maps of the cosmic microwave background radiation,” Nature, vol. 404, p. 955, 2000.10.1038/35010035Search in Google Scholar PubMed
[14] U. Seljak, A. Makarov, and P. McDonald, “Cosmological parameter analysis including SDSS Ly forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy,” Phys. Rev. D., vol. 71, p. 103515, 2005.10.1103/PhysRevD.71.103515Search in Google Scholar
[15] P. Astier, J. Guy, N. Regnault, et al.., “The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first year data set,” Astron. Astrophys., vol. 447, p. 31, 2006.10.1051/0004-6361:20054185Search in Google Scholar
[16] K. Abazajian, J. K. Adelman-McCarthy, and M. A. Agüeros, “The third data release of the sloan digital sky survey,” Astron. J., vol. 129, p. 1755, 2005.10.1086/427544Search in Google Scholar
[17] D. N. Spergel, L. Verde, H. V. Peiris, et al.., “First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters,” Astrophys. J. Suppl. Ser., vol. 148, p. 175, 2003. https://doi.org/10.1086/377226.Search in Google Scholar
[18] E. Komatsu, J. Dunkley, and M. R. Nolta, “Five-year wilkinson microwave anisotropy probe observations: cosmological interpretation,” Astrophys. J. Suppl., vol. 180, p. 330, 2009.10.1088/0067-0049/180/2/330Search in Google Scholar
[19] P. A. Ade, N. Aghanim, C. Armitage-Caplan, et al.., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys., vol. 571, p. A16, 2014.10.1051/0004-6361/201321591Search in Google Scholar
[20] M. Tegmark, M. A. Strauss, and M. R. Blanton, “Cosmological parameters from SDSS and WMAP,” Phys. Rev. D, vol. 69, p. 103501, 2004.10.1103/PhysRevD.69.103501Search in Google Scholar
[21] S. Nojiri and S. D. Odintsov, “Modified gravity with negative and positive powers of curvature: unification of inflation and cosmic acceleration,” Phys. Rev. D, vol. 68, p. 123512, 2003. https://doi.org/10.1103/physrevd.68.123512.Search in Google Scholar
[22] M. Khurshudyan, “On a holographic dark energy model with a Nojiri–Odintsov cut-off in general relativity,” Astrophys. Space Sci., vol. 361, p. 232, 2016. https://doi.org/10.1007/s10509-016-2821-1.Search in Google Scholar
[23] A. Jawad, N. Videla, and F. Gulshan, “Dynamics of warm power-law plateau inflation with a generalized inflaton decay rate: predictions and constraints after Planck 2015,” Eur. Phys. J. C, vol. 77, p. 271, 2017. https://doi.org/10.1140/epjc/s10052-017-4846-1.Search in Google Scholar
[24] N. Frusciante and L. Perenon, “Effective field theory of dark energy: a review,” Phys. Rep., vol. 857, pp. 1–63, 2020. https://doi.org/10.1016/j.physrep.2020.02.004.Search in Google Scholar
[25] U. Debnath, M. Jamil, and S. Chattopadhyay, “Fractional action cosmology: emergent, logamediate, intermediate, power law scenarios of the universe and generalized second law of thermodynamics,” Int. J. Theor. Phys., vol. 51, p. 812, 2012. https://doi.org/10.1007/s10773-011-0961-1.Search in Google Scholar
[26] A. Pasqua, S. Chattopadhyay, and I. Khomenko, “A reconstruction of modified holographic Ricci dark energy in f(R, T) gravity,” Can. J. Phys., vol. 91, p. 632, 2013. https://doi.org/10.1139/cjp-2013-0016.Search in Google Scholar
[27] G. Chakraborty and S. Chattopadhyay, “Investigating inflation driven by DBI-essence scalar field,” Int. J. Mod. Phys. D, vol. 29, no. 12, p. 2050087, 2020. https://doi.org/10.1142/s021827182050087x.Search in Google Scholar
[28] G. Chakraborty and S. Chattopadhyay, “Cosmology of Tsallis holographic scalar field models in Chern–Simons modified gravity and optimization of model parameters through χ 2 minimization,” Z. Naturforsch., vol. 76, no. 1, pp. 43–64, 2021. https://doi.org/10.1515/zna-2020-0228.Search in Google Scholar
[29] S. Chattopadhyay and G. Chakraborty, “A reconstruction scheme for f(T) gravity: variable generalized Chaplygin dark energy gas form,” Astron. Nachr., vol. 342, pp. 103–109, 2021. https://doi.org/10.1002/asna.202113888.Search in Google Scholar
[30] A. Aziza, G. Chakraborty, and S. Chattopadhyay, “Variable generalized Chaplygin gas in f(Q) gravity and the inflationary cosmology,” Int. J. Mod. Phys. D, vol. 30, p. 2150119, 2021. https://doi.org/10.1142/S0218271821501194.Search in Google Scholar
[31] G. Chakraborty, S. Chattopadhyay, and E. Gudekli, “Viscous holographic f(Q) cosmology with some versions of holographic dark energy with generalized cut-offs,” Res. Astron. Astrophys., vol. 21, no. 12, p. 317, 2021. https://doi.org/10.1088/1674-4527/21/12/317.Search in Google Scholar
[32] K. Bamba, S. Capozziello, S. I. Nojiri, and S. D. Odintsov, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests,” Astrophys. Space Sci., vol. 342, no. 1, pp. 155–228, 2012. https://doi.org/10.1007/s10509-012-1181-8.Search in Google Scholar
[33] S. I. Nojiri and S. D. Odintsov, “Final state and thermodynamics of a dark energy universe,” Phys. Rev. D, vol. 70, no. 10, p. 103522, 2004. https://doi.org/10.1103/physrevd.70.103522.Search in Google Scholar
[34] S. I. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” Int. J. Geomet. Methods Mod. Phys., vol. 04, no. 01, pp. 115–145, 2007. https://doi.org/10.1142/s0219887807001928.Search in Google Scholar
[35] G. Cognola, E. Elizalde, S. I. Nojiri, S. D. Odintsov, and S. Zerbini, “Dark energy in modified Gauss-Bonnet gravity: late-time acceleration and the hierarchy problem,” Phys. Rev. D, vol. 73, no. 8, p. 084007, 2006. https://doi.org/10.1103/physrevd.73.084007.Search in Google Scholar
[36] S. Capozziello, V. F. Cardone, E. Elizalde, S. I. Nojiri, and S. D. Odintsov, “Observational constraints on dark energy with generalized equations of state,” Phys. Rev. D, vol. 73, no. 4, p. 043512, 2006. https://doi.org/10.1103/physrevd.73.043512.Search in Google Scholar
[37] E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D, vol. 15, no. 11, pp. 1753–1935, 2006. https://doi.org/10.1142/s021827180600942x.Search in Google Scholar
[38] G. Chakraborty, S. Chattopadhyay, E. Güdekli, and I. Radinschi, “Thermodynamics of barrow holographic dark energy with specific cut-off,” Symmetry, vol. 13, no. 4, p. 562, 2021. https://doi.org/10.3390/sym13040562.Search in Google Scholar
[39] J. D. Bekenstein, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests,” Phys. Rev. D, vol. 2333, p. 7, 1973.Search in Google Scholar
[40] S. W. Hawking, “Dynamics of dark energy,” Commun. Math. Phys., vol. 199, p. 43, 1975.10.1007/BF02345020Search in Google Scholar
[41] G.’t. Hooft, Dimensional Reduction in Quantum Gravity, arxiv: gr-gc/9310026.Search in Google Scholar
[42] M. Li, X. D. Li, S. Wang, Y. Wang, and X. Zhang, “Black holes and entropy,” J. Cosmol. Astropart. Phys., vol. 0912, p. 014, 2009.10.1088/1475-7516/2009/12/014Search in Google Scholar
[43] H. Wei, “Modified holographic dark energy,” Nucl. Phys. B, vol. 819, p. 210, 2009. https://doi.org/10.1016/j.nuclphysb.2009.04.020.Search in Google Scholar
[44] C. Gao, F. Wu, X. Chen, and Y. G. Shen, “Probing interaction and spatial curvature in the holographic dark energy model,” Phys. Rev. D, vol. 79, p. 043511, 2009. https://doi.org/10.1103/physrevd.79.043511.Search in Google Scholar
[45] Z. Zhang, M. Li, X.-D. Li, S. Wang, and W. S. Zhang, “Generalized holographic dark energy and its observational constraints,” Mod. Phys. Lett. A, vol. 27, p. 1250115, 2012. https://doi.org/10.1142/s0217732312501155.Search in Google Scholar
[46] V. Gorini, A. Kamenshchik, U. Moschella and V. Pasquier, The Chaplygin gas as a model for dark energy, pp. 840–859, 2006, arXiv:gr-qc/0403062v2.10.1142/9789812704030_0050Search in Google Scholar
[47] J. Lu, “Cosmology with a variable generalized Chaplygin gas,” Phys. Lett. B, vol. 680, pp. 404–410, 2009. https://doi.org/10.1016/j.physletb.2009.09.027.Search in Google Scholar
[48] K. Boshkayev, T. Konysbayev, O. Luongo, M. Muccino, and F. Pace, Phys. Rev. D, vol. 104, p. 023520, 2021. https://doi.org/10.1103/physrevd.104.023520.Search in Google Scholar
[49] K. Boshkayev, R. D’Agostino, and O. Luongo, “Extended logotropic fluids as unified dark energy models,” Eur. Phys. J. C, vol. 79, p. 332, 2019. https://doi.org/10.1140/epjc/s10052-019-6854-9.Search in Google Scholar
[50] S. Capozziello, R. D’Agostino, and O. Luongo, “Cosmic acceleration from a single fluid description,” Phys. Dark Universe, vol. 20, p. 1, 2018, arXiv:1712.04317 [gr-qc]. https://doi.org/10.1016/j.dark.2018.02.002.Search in Google Scholar
[51] S. Capozziello, R. D’Agostino, R. Giambò, and O. Luongo, “Effective field description of the Anton-Schmidt cosmic fluid,” Phys. Rev. D, vol. 99, p. 023532, 2019. https://doi.org/10.1103/physrevd.99.023532.Search in Google Scholar
[52] P. K. S. Dunsby, O. Luongo, and L. Reverberi, “Dark energy and dark matter from an additional adiabatic fluid,” Phys. Rev. D, vol. 94, p. 083525, 2016, arXiv:1604.06908 [gr-qc]. https://doi.org/10.1103/physrevd.94.083525.Search in Google Scholar
[53] O. Luongo and M. Muccino, “Speeding up the universe using dust with pressure,” Phys. Rev. D, vol. 98, p. 103520, 2018. https://doi.org/10.1103/physrevd.98.103520.Search in Google Scholar
[54] H. Benaoum, “Accelerated universe from modified Chaplygin gas and tachyonic fluid,” Universe, vol. 8, no. 7, p. 340, 2022. https://doi.org/10.3390/universe8070340.Search in Google Scholar
[55] U. Debnath, “Constraining the parameters of modified Chaplygin gas in Brans–Dicke theory,” Phys. Dark Universe, vol. 31, p. 100764, 2021. https://doi.org/10.1016/j.dark.2020.100764.Search in Google Scholar
[56] R. Saleem, A. Wahab, and I. Shahid, “Effectiveness of Rastall gravity in modified Chaplygin gas inspired viscous-flation,” Phys. Scr., vol. 97, p. 055209, 2022. https://doi.org/10.1088/1402-4896/ac64ce.Search in Google Scholar
[57] W. Jiang, T. Li, Z. Wang, and S. Fang, “The limiting behavior of the Riemann solutions of non-isentropic modified Chaplygin gas dynamics,” J. Math. Phys., vol. 62, p. 041501, 2021. https://doi.org/10.1063/5.0033806.Search in Google Scholar
[58] S. Ray, P. Paul, R. Sengupta, N. Pant, and R. Nag, “Modified Chaplygin gas in anisotropic universes on the brane,” Int. J. Mod. Phys., vol. 30, no. 12, p. 2150093, 2021. https://doi.org/10.1142/s0218271821500930.Search in Google Scholar
[59] S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models,” Phys. Rep., vol. 505, p. 59, 2011.10.1016/j.physrep.2011.04.001Search in Google Scholar
[60] S. Nojiri and S. D. Odintsov, “Brane-world cosmology in higher derivative gravity or warped compactification in the next-to-leading order of AdS/CFT correspondence,” J. High Energy Phys., vol. 0007, p. 049, 2000. https://doi.org/10.1088/1126-6708/2000/07/049.Search in Google Scholar
[61] K. Bamba, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, “Reconstruction off(T)gravity: rip cosmology, finite-time future singularities, and thermodynamics,” Phys. Rev. D, vol. 85, p. 104036, 2012. https://doi.org/10.1103/physrevd.85.104036.Search in Google Scholar
[62] S. Chattopadhyay, “Generalized Ricci dark energy in Horava–Lifshitz gravity,” Eur. Phys. J. Plus, vol. 127, p. 16, 2012. https://doi.org/10.1140/epjp/i2012-12016-0.Search in Google Scholar
[63] A. Paliathanasis and G. Leon, “Cosmological solutions in Hořava–Lifshitz scalar field theory,” ZnA, vol. 75, p. 523, 2020. https://doi.org/10.1515/zna-2020-0003.Search in Google Scholar
[64] N. Azhar, A. Jawad, and S. Rani, “Generalized gravitational baryogenesis of well-known f(T,TG) and f(T,B) models,” Phys. Dark Universe, vol. 30, p. 100724, 2020, arXiv:2009.13293 [gr-qc]. https://doi.org/10.1016/j.dark.2020.100724.Search in Google Scholar
[65] E. W. Kolb, A. Linde, and A. Riotto, “Grand-unified-theory baryogenesis after preheating,” Phys. Rev. Lett., vol. 77, p. 4290, 1996. https://doi.org/10.1103/physrevlett.77.4290.Search in Google Scholar PubMed
[66] D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New J. Phys., vol. 14, p. 125003, 2012. https://doi.org/10.1088/1367-2630/14/12/125003.Search in Google Scholar
[67] T. Jacobson and D. Mattingly, “Interacting dark matter and modified holographic Ricci dark energy induce a relaxed Chaplygin gas,” Phys. Rev. D, vol. 64, p. 024028, 2001. https://doi.org/10.1103/physrevd.64.024028.Search in Google Scholar
[68] W. Donnelly and T. Jacobson, “Baryogenesis, magnetogenesis and the strength of anomalous interactions,” Phys. Rev. D, vol. 82, p. 064032, 2010. https://doi.org/10.1103/physrevd.82.081501.Search in Google Scholar
[69] T. G. Zlosnik, P. G. Ferreira, and G. D. Starkman, “Baryogenesis via leptogenesis in multi-field inflation,” Phys. Rev. D, vol. 75, p. 044017, 2007. https://doi.org/10.1103/physrevd.75.044017.Search in Google Scholar
[70] D. Garfinkle and T. Jacobson, “A positive-energy theorem for Einstein-aether and Hořava gravity,” Phys. Rev. Lett., vol. 107, p. 191102, 2011. https://doi.org/10.1103/physrevlett.107.191102.Search in Google Scholar PubMed
[71] G. Leon and A. Paliathanasis, “Extended phase-space analysis of the Hořava–Lifshitz cosmology,” Eur. Phys. J. C, vol. 79, p. 746, 2019. https://doi.org/10.1140/epjc/s10052-019-7236-z.Search in Google Scholar
[72] O. Luongo, M. Muccino, and H. Quevedo, “Kinematic and statistical inconsistencies of Hořava–Lifshitz cosmology,” Phys. Dark Universe, vol. 25, p. 100313, 2019.10.1016/j.dark.2019.100313Search in Google Scholar
[73] E. Kiritsis and G. Kofinas, “Hořava–Lifshitz cosmology,” Nucl. Phys. B, vol. 821, p. 467, 2009. https://doi.org/10.1016/j.nuclphysb.2009.05.005.Search in Google Scholar
[74] B. Pourhassan, “Extended Chaplygin gas in Horava–Lifshitz gravity,” Phys. Dark Universe, vol. 13, p. 132, 2016. https://doi.org/10.1016/j.dark.2016.06.002.Search in Google Scholar
[75] S. S. Mishra and V. Sahni, “Unifying dark matter and dark energy with non-canonical scalars,” Eur. Phys. J. C, vol. 81, p. 625, 2021. https://doi.org/10.1140/epjc/s10052-021-09433-w.Search in Google Scholar
[76] R. D’Agostino, O. Luongo, M. Muccino, What Is the Hubble Constant? arXiv:2204.02190 [gr-qc], 2022.Search in Google Scholar
[77] S. Capozziello, C. A. Mantica, and L. G. Molinari, “Cosmological perfect-fluids in f(R) gravity,” Int. J. Geomet. Methods Mod. Phys., vol. 16, p. 1950008, 2019. https://doi.org/10.1142/s0219887819500087.Search in Google Scholar
[78] A. R. R. Castellanos, F. Sobreira, I. L. Shapiro, and A. A. Starobinsky, “On higher derivative corrections to the R + R2 inflationary model,” JCAP, vol. 12, p. 007, 2018.10.1088/1475-7516/2018/12/007Search in Google Scholar
[79] D. D. Canko, I. D. Gialamas, and G. P. Kodaxis, “A simple F(R,ϕ) deformation of Starobinsky inflationary model,” Eur. Phys. J. C, vol. 80, p. 458, 2020. https://doi.org/10.1140/epjc/s10052-020-8025-4.Search in Google Scholar
[80] D. S. Salopek, “Characteristics of cosmic time,” Phys. Rev. D, vol. 52.10, p. 5563, 1995. https://doi.org/10.1103/physrevd.52.5563.Search in Google Scholar PubMed
[81] S. E. Rugh and H. Zinkernagel, “On the physical basis of cosmic time,” Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys., vol. 40, no. 1, pp. 1–19, 2009. https://doi.org/10.1016/j.shpsb.2008.06.001.Search in Google Scholar
[82] M. Sharif and K. Nazir, “Cosmological analysis of reconstructed F(T,TG) F(T, TG) models,” Eur. Phys. J. C, vol. 78, p. 77, 2018. https://doi.org/10.1140/epjc/s10052-018-5572-z.Search in Google Scholar
[83] Y. Aditya and D. R. K. Reddy, “FRW type Kaluza–Klein modified holographic Ricci dark energy models in Brans–Dicke theory of gravitation,” Eur. Phys. J. C, vol. 78, p. 619, 2018. https://doi.org/10.1140/epjc/s10052-018-6074-8.Search in Google Scholar
[84] W. Javed, I. Nawazish, F. Shahid, and N. Irshad, “Evolution of non-flat cosmos via GGPDE f(R) model,” Eur. Phys. J. C, vol. 80, p. 90, 2020. https://doi.org/10.1140/epjc/s10052-020-7640-4.Search in Google Scholar
[85] M. Sethi, A. Batra, and D. Lohiya, “Comment on “observational constraints on power-law cosmologies”,” Phys. Rev. D, vol. 60, p. 108301, 1999. https://doi.org/10.1103/physrevd.60.108301.Search in Google Scholar
[86] M. Kaplinghat, G. Steigman, I. Tkachev, and T. P. Walker, Phys. Rev. D, vol. 59, p. 043514, 1999. https://doi.org/10.1103/physrevd.59.043514.Search in Google Scholar
[87] V. Sahni, T. D. Saini, A. A. Starovinsky, and U. Alam, “Statefinder-A new geometrical diagnostic of dark energy,” Jetp Lett., vol. 77, p. 201, 2003. https://doi.org/10.1134/1.1574831.Search in Google Scholar
[88] U. Alam, V. Sahni, T. D. Saini, and A. A. Starovinsky, “Exploring the expanding universe and dark energy using the statefinder diagnostic,” Mon. Not. R. Astron. Soc., vol. 344, p. 1057, 2003. https://doi.org/10.1046/j.1365-8711.2003.06871.x.Search in Google Scholar
[89] A. Aviles, C. Gruber, O. Luongo, and H. Quevedo, “Cosmography and constraints on the equation of state of the universe in various parametrizations,” Phys. Rev. D, vol. 86, p. 123516, 2012. https://doi.org/10.1103/physrevd.86.123516.Search in Google Scholar
[90] C. Gruber and O. Luongo, “Cosmographic analysis of the equation of state of the universe through Padé approximations,” Phys. Rev. D, vol. 89, p. 103506, 2014. https://doi.org/10.1103/physrevd.89.103506.Search in Google Scholar
[91] A. Aviles, A. Bravetti, S. Capozziello, and O. Luongo, “Precision cosmology with Padé rational approximations: theoretical predictions versus observational limits,” Phys. Rev. D, vol. 90, p. 043531, 2014. https://doi.org/10.1103/physrevd.90.043531.Search in Google Scholar
[92] P. K. S. Dunsby and O. Luongo, “On the theory and applications of modern cosmography,” Int. J. Geomet. Methods Mod. Phys., vol. 13, p. 1630002, 2016. https://doi.org/10.1142/s0219887816300026.Search in Google Scholar
[93] A. Aviles, J. Klapp, and O. Luongo, “Toward unbiased estimations of the statefinder parameters,” Phys. Dark Universe, vol. 17, p. 25, 2017. https://doi.org/10.1016/j.dark.2017.07.002.Search in Google Scholar
[94] Á. de la Cruz-Dombriz, P. K. S. Dunsby, O. Luongo, and L. Reverberi, “Model-independent limits and constraints on extended theories of gravity from cosmic reconstruction techniques,” J. Cosmol. Astropart. Phys., vol. 12, p. 042, 2016. https://doi.org/10.1088/1475-7516/2016/12/042.Search in Google Scholar
[95] S. Capozziello, R. D’Agostino, and O. Luongo, “Cosmographic analysis with Chebyshev polynomials,” Mon. Not. Roy. Astron. Soc., vol. 476, p. 3924, 2018. https://doi.org/10.1093/mnras/sty422.Search in Google Scholar
[96] S. Capozziello, R. D’Agostino, and O. Luongo, “Extended gravity cosmography,” Int. J. Mod. Phys. D, vol. 28, p. 1930016, 2019. https://doi.org/10.1142/s0218271819300167.Search in Google Scholar
[97] S. Capozziello, R. D’Agostino, and O. Luongo, “High-redshift cosmography: auxiliary variables versus Padé polynomials,” Mon. Not. Roy. Astron. Soc., vol. 494, p. 2576, 2020. https://doi.org/10.1093/mnras/staa871.Search in Google Scholar
[98] S. Nojiri, S. D. Odintsov, and T. Paul, “Barrow entropic dark energy: a member of generalized holographic dark energy family,” Phys. Lett. B, vol. 825, p. 136844, 2022. https://doi.org/10.1016/j.physletb.2021.136844.Search in Google Scholar
[99] S. Nojiri, S. D. Odintsov, and T. Paul, “Different faces of generalized holographic dark energy,” Symmetry, vol. 13, no. 6, p. 928, 2021. https://doi.org/10.3390/sym13060928.Search in Google Scholar
[100] P. Adhikary, S. Das, S. Basilakos, and E. N. Saridakis, “Barrow holographic dark energy in a nonflat universe,” Phys. Rev. D, vol. 104, no. 12, p. 123519, 2021. https://doi.org/10.1103/PhysRevD.104.123519.Search in Google Scholar
[101] S. H. Shekh, “Models of holographic dark energy in f(Q) gravity,” Phys. Dark Universe, vol. 33, p. 100850, 2021. https://doi.org/10.1016/j.dark.2021.100850.Search in Google Scholar
[102] H. Wei, “Modified holographic dark energy,” Nucl. Phys. B, vol. 819, nos. 1–2, pp. 210–224, 2009. https://doi.org/10.1016/j.nuclphysb.2009.04.020.Search in Google Scholar
[103] L. N. Granda and A. Oliveros, “Infrared cut-off proposal for the holographic density,” Phys. Lett. B, vol. 669, no. 5, pp. 275–277, 2008. https://doi.org/10.1016/j.physletb.2008.10.017.Search in Google Scholar
[104] L. P. Chimento and M. G. Richarte, “Interacting dark matter and modified holographic Ricci dark energy induce a relaxed Chaplygin gas,” Phys. Rev. D, vol. 84, no. 12, p. 123507, 2011. https://doi.org/10.1103/physrevd.84.123507.Search in Google Scholar
[105] M. Giovannini, “Baryogenesis, magnetogenesis and the strength of anomalous interactions,” Eur. Phys. J. C, vol. 81, p. 503, 2021. https://doi.org/10.1140/epjc/s10052-021-09282-7.Search in Google Scholar
[106] G. Panotopoulos and N. Videla, “Baryogenesis via leptogenesis in multi-field inflation,” Eur. Phys. J. C, vol. 78, p. 774, 2018. https://doi.org/10.1140/epjc/s10052-018-6266-2.Search in Google Scholar
[107] Y. Hamada and M. Yamada, “Baryogenesis in false vacuum,” Eur. Phys. J. C, vol. 77, p. 643, 2017. https://doi.org/10.1140/epjc/s10052-017-5215-9.Search in Google Scholar
[108] J. L. Yang, T. F. Feng, and H. B. Zhang, “Electroweak baryogenesis and electron EDM in the B-LSSM,” Eur. Phys. J. C, vol. 80, p. 210, 2020. https://doi.org/10.1140/epjc/s10052-020-7753-9.Search in Google Scholar
[109] E. H. Baffou, M. J. S. Houndjo, D. A. Kanfon, and I. G. Salako, “f(R, T) models applied to baryogenesis,” Eur. Phys. J. C, vol. 79, p. 112, 2019. https://doi.org/10.1140/epjc/s10052-019-6559-0.Search in Google Scholar
[110] https://en.wikipedia.org/wiki/Baryogenesis.Search in Google Scholar
[111] G. Steigman, R. J. Scherrer, arXiv:1801.10059v1 [astro-ph.CO], 2018.Search in Google Scholar
[112] H. Bialkowska, “NA49,” in Proceedings of the 31st International Conference on High Energy Physics Ichep 2002, 2003.Search in Google Scholar
[113] https://www.livescience.com/hubble-constant.html.Search in Google Scholar
[114] https://astronomy.swin.edu.au/cosmos/d/density+parameter.Search in Google Scholar
[115] http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/denpar.html.Search in Google Scholar
[116] S. Bhattacharjee and P. K. Sahoo, “Baryogenesis in f(Q,T) gravity,” Eur. Phys. J. C, vol. 80, no. 3, p. 289, 2020. https://doi.org/10.1140/epjc/s10052-020-7844-7.Search in Google Scholar
[117] O. Luongo, N. Marcantognini, M. Muccino, arXiv: 2112.05730 [hep-ph], 2021.Search in Google Scholar
[118] A. Aviles, L. Bonanno, O. Luongo, and H. Quevedo, “Holographic dark matter and dark energy with second order invariants,” Phys. Rev. D, vol. 84, p. 103520, 2011. https://doi.org/10.1103/physrevd.84.103520.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Qualitative behavior of a discrete predator–prey system under fear effects
- Nonlinear behaviour of ion acoustic shock waves in a two-electron temperature nonthermal complex plasma
- Gravitation & Cosmology
- Study of baryogenesis in the framework of Hořava–Lifshitz cosmology with Starobinsky potential
- Solid State Physics & Materials Science
- Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite solar cell
- Thermodynamics & Statistical Physics
- Thermodynamics of the classical spin triangle
Articles in the same Issue
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Qualitative behavior of a discrete predator–prey system under fear effects
- Nonlinear behaviour of ion acoustic shock waves in a two-electron temperature nonthermal complex plasma
- Gravitation & Cosmology
- Study of baryogenesis in the framework of Hořava–Lifshitz cosmology with Starobinsky potential
- Solid State Physics & Materials Science
- Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite solar cell
- Thermodynamics & Statistical Physics
- Thermodynamics of the classical spin triangle