Startseite Simultaneous demodulation comparison of fiber-optic Fabry–Perot sensors connected in parallel and series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simultaneous demodulation comparison of fiber-optic Fabry–Perot sensors connected in parallel and series

  • Jie Liao , Wenlin Feng EMAIL logo und Xiaozhan Yang
Veröffentlicht/Copyright: 19. Juli 2021

Abstract

In this work, the spectra of two fiber-optic Fabry–Perot sensors in parallel and series connection were studied. The spectrum of the parallel structure is a simple superposition of the two sensors’ spectrum, and that of the series structure can be regarded as the interference occurring in two Fabry–Perot sensors successively. The sensors’ optical path difference can be obtained and separated by using the theoretical formula to fit the normalized spectrum of parallel or series structure, which showed that two or more Fabry–Perot sensors can be simultaneously demodulated by the spectrum fitting method.


Corresponding author: Wenlin Feng, College of Science, Chongqing University of Technology, Chongqing 400054, China; and Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing 400054, China, E-mail:

Award Identifier / Grant number: KJZD-M201901102

Award Identifier / Grant number: 51574054

Funding source: Chongqing Science and Technology Bureau

Award Identifier / Grant number: CSTCCXLJRC201905

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The research was supported by the National Natural Science Foundation of China (No. 51574054); Chongqing Municipal Education Commission (No. KJZD-M201901102); Chongqing Science and Technology Bureau (No. CSTCCXLJRC201905).

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

[1] K. Cao, Y. Liu, and S. Qu, “Compact fiber biocompatible temperature sensor based on a hermetically-sealed liquid-filling structure,” Opt. Express, vol. 25, pp. 29597–29604, 2017. https://doi.org/10.1364/oe.25.029597.Suche in Google Scholar

[2] I. Hernandezromano, M. A. Cruzgarcia, C. Morenohernandez, et al.., “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express, vol. 24, pp. 5654–5661, 2016. https://doi.org/10.1364/oe.24.005654.Suche in Google Scholar

[3] C. Gouveia, P. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-Birefringent fiber Bragg Grating for refractive index and temperature measurement,” IEEE Sens. J., vol. 12, pp. 17–21, 2011.10.1109/JSEN.2011.2107898Suche in Google Scholar

[4] C. Wu, Z. Liu, A. Zhang, B. Guan, and H. Tam, “In-line open-cavity Fabry-Perot interferometer formed by C-shaped fiber for temperature insensitive refractive index sensing,” Opt. Express, vol. 22, pp. 21757–21766, 2014. https://doi.org/10.1364/oe.22.021757.Suche in Google Scholar PubMed

[5] T. Wang, Y. Ge, H. Ni, J. Chang, J. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik, vol. 171, pp. 869–875, 2018. https://doi.org/10.1016/j.ijleo.2018.06.151.Suche in Google Scholar

[6] J. Chen, C. Xue, Y. Zheng, L. Wu, C. Chen, and Y. Han, “Micro-fiber-optic acoustic sensor based on high-Q resonance effect using Fabry-Pérot etalon,” Opt. Express, vol. 29, pp. 16447–16454, 2021. https://doi.org/10.1364/oe.418736.Suche in Google Scholar PubMed

[7] Y. Rao, C. Zhou, and T. Zhu, “SFDM/CWDM of fiber-optic Fizeau strain sensors,” IEEE Photon. Technol. Lett., vol. 17, pp. 1259–1261, 2005. https://doi.org/10.1109/lpt.2005.847449.Suche in Google Scholar

[8] J. Yin, T. Liu, J. Jiang, et al.., “Wavelength-division-multiplexing method of polarized low-coherence interferometry for fiber Fabry-Perot interferometric sensors,” Opt. Lett., vol. 38, pp. 3751–3753, 2013. https://doi.org/10.1364/ol.38.003751.Suche in Google Scholar PubMed

[9] Z. Ran, Y. Rao, W. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high resolution temperature independent measurement of refractive index,” Opt. Express, vol. 16, pp. 2252–2263, 2008. https://doi.org/10.1364/oe.16.002252.Suche in Google Scholar PubMed

[10] R. Gao, Y. Jiang, W. Ding, Z. Wang, and D. Liu, “Filmed extrinsic Fabry-Perot interferometric sensors for the measurement of arbitrary refractive index of liquid,” Sens. Actuators, B, vol. 177, pp. 924–928, 2013. https://doi.org/10.1016/j.snb.2012.11.083.Suche in Google Scholar

[11] H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express, vol. 18, pp. 141–149, 2010. https://doi.org/10.1364/oe.18.000141.Suche in Google Scholar PubMed

[12] Z. Li, J. Tian, Y. Jiao, Y. Sun, and Y. Yao, “Simultaneous measurement of air pressure and temperature using fiber-optic cascaded Fabry-Perot interferometer,” IEEE Photon. J., vol. 11, p. 7100410, 2019. https://doi.org/10.1109/jphot.2018.2884776.Suche in Google Scholar

[13] R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interfero-meter for simultaneous measurement of gas refractive index and temperature,” Appl. Opt., vol. 53, pp. 7724–7728, 2014. https://doi.org/10.1364/ao.53.007724.Suche in Google Scholar

[14] H. Lu, P. Zhang, W. Chen, Y. Zhu, X. Gan, and X. Lie, “Study on fiber Fabry-Perot strain sensors series and parallel mixed multiplexing with discrete gap transform,” Acta Photonica Sinica, vol. 36, pp. 842–846, 2007.Suche in Google Scholar

[15] T. Yao, S. Pu, Y. Zhao, and Y. Li, “Ultrasensitive refractive index sensor based on parallel-connected dual Fabry-Perot interferometers with Vernier effect,” Sens. Actuators, A, vol. 290, pp. 14–19, 2019. https://doi.org/10.1016/j.sna.2019.03.011.Suche in Google Scholar

[16] B. Qi, G. R. Pickrell, J. Xu, et al.., “Novel data processing techniques for dispersive white light interferometer,” Opt. Engin., vol. 42, pp. 3165–3171, 2003. https://doi.org/10.1117/1.1613958.Suche in Google Scholar

[17] J. Liao, W. L. Feng, and X. Z. Yang, “Fiber optic Fabry–Perot interferometer constructed by quartz capillary and titanium wire for temperature measurement,” Meas. Sci. Techn., vol. 32, p. 015102, 2021. https://doi.org/10.1088/1361-6501/ababd9.Suche in Google Scholar

Received: 2021-05-12
Revised: 2021-06-28
Accepted: 2021-06-30
Published Online: 2021-07-19
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0128/pdf?lang=de
Button zum nach oben scrollen