Home Periodic and localized structures in dusty plasma with Kaniadakis distribution
Article
Licensed
Unlicensed Requires Authentication

Periodic and localized structures in dusty plasma with Kaniadakis distribution

  • Muhammad Khalid EMAIL logo , Mohsin Khan , Muddusir , Ata-ur-Rahman and Muhammad Irshad
Published/Copyright: August 23, 2021

Abstract

The propagation of electrostatic dust-ion-acoustic nonlinear periodic waves is investigated in dusty plasma wherein electrons follow Kaniadakis distribution. The Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are derived by employing reductive perturbation method and their cnoidal wave solutions are analysed. The effect of relevant parameters (viz., κ-deformed parameter κ and dust concentration β) on the dynamics of cnoidal structures is discussed. Further it is found that amplitude of compressive cnoidal waves increases with increasing values of β, while reverse effect is observed in case of rarefactive cnoidal structures with rising values of β. Also κ-deformed parameter κ bears no effect on cnoidal waves associated with KdV equation, whereas κ-deformed parameter κ significantly affects the cnoidal waves associated with mKdV equation.


Corresponding author: Muhammad Khalid, Department of Physics, Government Post Graduate College Mardan, Mardan 23200, Pakistan; and Department of Physics, Islamia College Peshawar (Public Sector University), Peshawar 25120, Pakistan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol, Institute of Physics Publishing, 2002.10.1887/075030653XSearch in Google Scholar

[2] C. K. Goertz, “Dusty plasmas in the solar system,” Rev. Geophys., vol. 27, p. 271, 1989. https://doi.org/10.1029/rg027i002p00271.Search in Google Scholar

[3] T. G. Northrop, “Dusty plasmas,” Phys. Scripta, vol. 45, p. 475, 1992. https://doi.org/10.1088/0031-8949/45/5/011.Search in Google Scholar

[4] P. K. Shukla and B. Eliasson, “Colloquium: fundamentals of dust-plasma interactions,” Rev. Mod. Phys., vol. 81, p. 25, 2009. https://doi.org/10.1103/revmodphys.81.25.Search in Google Scholar

[5] V. N. Tsytovich, G. E. Morfill, and H. Thomas, “Complex plasmas: I. complex plasmas as unusual state of matter,” Plasma Phys. Rep., vol. 28, p. 623, 2002. https://doi.org/10.1134/1.1501321.Search in Google Scholar

[6] P. K. Shukla and V. P. Silin, “Dust ion-acoustic wave,” Phys. Scripta, vol. 45, p. 508, 1992. https://doi.org/10.1088/0031-8949/45/5/015.Search in Google Scholar

[7] A. Barkan, N. D’Angelo, and R. L. Merlino, “Experiments on ion-acoustic waves in dusty plasmas,” Planet. Space Sci., vol. 44, p. 239, 1996. https://doi.org/10.1016/0032-0633(95)00109-3.Search in Google Scholar

[8] M. K. Mishra, R. S. Tiwari, and J. K. Chawla, “Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions,” Phys. Plasmas, vol. 19, p. 062303, 2012. https://doi.org/10.1063/1.4725505.Search in Google Scholar

[9] J. K. Chawla and M. K. Mishra, “Obliquely propagating ion-acoustic double layers in magnetized electron-positron-ion plasma,” Astrophys. Space Sci., vol. 343, p. 629, 2013. https://doi.org/10.1007/s10509-012-1269-1.Search in Google Scholar

[10] J. K. Chawla, M. K. Mishra, and R. S. Tiwari, “Modulational instability of ion-acoustic waves in electron-positron-ion plasmas,” Astrophys. Space Sci., vol. 347, p. 283, 2013. https://doi.org/10.1007/s10509-013-1520-4.Search in Google Scholar

[11] J. K. Chawla and M. K. Mishra, “Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma,” Phys. Plasmas, vol. 17, p. 102315, 2010. https://doi.org/10.1063/1.3501138.Search in Google Scholar

[12] M. Khalid, A. Rahman, F. Hadi, and A. Zeb, “Nonlinear ion flux caused by dust ion-acoustic nonlinear periodic waves in non-thermal plasmas,” Pramana - J. Phys., vol. 92, p. 86, 2019. https://doi.org/10.1007/s12043-019-1749-8.Search in Google Scholar

[13] G. Ullah, M. Saleem, M. Khan, M. Khalid, A. Rahman, and S. Nabi, “Ion acoustic solitary waves in magnetized electron-positron-ion plasmas with Tsallis distributed electrons,” Contrib. Plasma Phys., vol. 60, p. e202000068, 2020. https://doi.org/10.1002/ctpp.202000068.Search in Google Scholar

[14] A. Rahman, M. Khalid, S. N. Naeem, E. A. Elghmaz, S. A. El-Tantawy, and L. S. El-Sherif, “Periodic and localized structures in a degenerate Thomas-Fermi plasma,” Phys. Lett. A, vol. 384, p. 126257, 2020. https://doi.org/10.1016/j.physleta.2020.126257.Search in Google Scholar

[15] P. C. Singhadiya, J. K. Chawla, and S. K. Jain, “Ion-acoustic compressive and rarefactive solitary waves in unmagnetised plasmas with positrons and two-temperature superthermal electrons,” Pramana - J. Phys., vol. 94, p. 80, 2020. https://doi.org/10.1007/s12043-020-1943-8.Search in Google Scholar

[16] J. K. Chawla, P. C. Singhadiya, and R. S. Tiwari, “Ion-acoustic waves in magnetised plasma with nonthermal electrons and positrons,” Pramana - J. Phys., vol. 94, p. 13, 2020. https://doi.org/10.1007/s12043-019-1870-8.Search in Google Scholar

[17] J. K. Chawla, “Effect of non-thermal electrons on ion-acoustic dressed solitons in unmagnetised plasmas,” Pramana - J. Phys., vol. 95, p. 48, 2021. https://doi.org/10.1007/s12043-021-02084-2.Search in Google Scholar

[18] M. Khalid, A. Khan, M. Khan, D. Khan, S. Ahmad, and A. Rahman, “Electron acoustic solitary waves in unmagnetized nonthermal plasmas,” Commun. Theor. Phys., vol. 73, p. 055501, 2021. https://doi.org/10.1088/1572-9494/abd0eb.Search in Google Scholar

[19] R. S. Tiwari, S. L. Jain, and J. K. Chawla, “Ion acoustic cnoidal waves and associated nonlinear ion flux in a warm ion plasma,” Phys. Plasmas, vol. 14, p. 022106, 2007. https://doi.org/10.1063/1.2424428.Search in Google Scholar

[20] M. Khalid and A. Rahman, “Ion acoustic cnoidal waves in a magnetized plasma in the presence of ion pressure anisotropy,” Astrophys. Space Sci., vol. 364, p. 28, 2019. https://doi.org/10.1007/s10509-019-3517-0.Search in Google Scholar

[21] M. Khalid, G. Ullah, M. Khan, S. Ahmad, S. Nabi, and D. Khan, “Oblique propagation of nonlinear ion-acoustic cnoidal waves in magnetized electron-positron-ion plasmas with nonextensive electrons,” Plasma Sci. Technol., vol. 23, p. 035301, 2021. https://doi.org/10.1088/2058-6272/abda23.Search in Google Scholar

[22] M. Khalid, M. Khan, A. Rahman, and F. Hadi, “Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons,” Indian J. Phys., 2021. https://doi.org/10.1007/s12648-021-02108-y.Search in Google Scholar

[23] M. Khalid, F. Hadi, and A. Rahman, “Ion-scale cnoidal waves in a magnetized anisotropic superthermal plasma,” J. Phys. Soc. Jpn., vol. 88, p. 114501, 2019. https://doi.org/10.7566/jpsj.88.114501.Search in Google Scholar

[24] U. Kauschke and H. Schulter, “On nonlinear periodic drift waves,” Plasma Phys. Contr. Fusion, vol. 33, p. 1309, 1991. https://doi.org/10.1088/0741-3335/33/11/006.Search in Google Scholar

[25] V. I. Nayanov, “Surface acoustic cnoidal waves in a LiNbO3-(SiOfilm)structure,” JETP Lett., vol. 44, p. 314, 1986.Search in Google Scholar

[26] W. J. Pierson, M. A. DonelanJr., and W. H. Hui, “Linear and nonlinear propagation of water wave groups,” J. Geophys. Res., vol. 97, p. 5607, 1992. https://doi.org/10.1029/92jc00115.Search in Google Scholar

[27] N. Korneev, A. Apolinar Iribe, V. A. Vysloukh, and M. A. Basurto Pensado, “Self-compression of 1+1D cnoidal wave in photorefractive BTO crystal: an experimental evidence,” Opt. Commun., vol. 197, p. 209, 2001. https://doi.org/10.1016/s0030-4018(01)01430-4.Search in Google Scholar

[28] K. Konno, T. Mitsuhashi, and Y. H. Ichikawa, “Propagation of ion acoustic cnoidal wave,” J. Phys. Soc. Jpn., vol. 46, p. 1907, 1979. https://doi.org/10.1143/jpsj.46.1907.Search in Google Scholar

[29] L. L. Yadav, R. S. Tiwari, and S. R. Sharma, “Obliquely propagating ion-acoustic nonlinear periodic waves in a magnetized plasma with two electron species,” J. Plasma Phys., vol. 51, p. 355, 1994. https://doi.org/10.1017/s0022377800017621.Search in Google Scholar

[30] A. Rahman, M. Khalid, and A. Zeb, “Compressive and rarefactive ion acoustic nonlinear periodic waves in nonthermal plasmas,” Braz. J. Phys., vol. 49, p. 726, 2019. https://doi.org/10.1007/s13538-019-00693-2.Search in Google Scholar

[31] U. K. Samanta, A. Saha, and P. Chatterjee, “Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with aq-nonextensive electron velocity distribution,” Phys. Plasmas, vol. 20, no. 2, p. 022111, 2013. https://doi.org/10.1063/1.4791660.Search in Google Scholar

[32] S. Y. El-Monier and A. Atteya, “Bifurcation analysis for dust-acoustic waves in a four-component plasma including warm ions,” IEEE Trans. Plasma Sci., vol. 46, no. 4, pp. 815–824, 2017.10.1109/TPS.2017.2766097Search in Google Scholar

[33] A. Saha, P. Chatterjee, and S. Banerjee, “An open problem on supernonlinear waves in a two-component Maxwellian plasma,” Eur. Phys. J. Plus, vol. 135, no. 10, p. 801, 2020. https://doi.org/10.1140/epjp/s13360-020-00816-8.Search in Google Scholar

[34] A. Saha, B. Pradhan, and S. Banerjee, “Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma,” Eur. Phys. J. Plus, vol. 135, no. 2, p. 216, 2020. https://doi.org/10.1140/epjp/s13360-020-00235-9.Search in Google Scholar

[35] A. abdikian, J. Tamang, and A. Saha, “Supernonlinear wave and multistability in magneto-rotating plasma with (r, q) distributed electrons,” Phys. Scripta, vol. 96, no. 9, p. 095605, 2021. https://doi.org/10.1088/1402-4896/ac07b7.Search in Google Scholar

[36] P. K. Prasad and A. Saha, “Dynamical behavior and multistability of ion-acoustic waves in a magnetized Auroral zone plasma,” J. Astrophys. Astron., vol. 42, p. 9, 2021. https://doi.org/10.1007/s12036-021-09721-7.Search in Google Scholar

[37] R. M. Taha and W. F. El-Taibany, “Bifurcation analysis of nonlinear and supernonlinear dust-acoustic waves in a dusty plasma using the generalized (r , q ) distribution function for ions and electrons,” Contrib. Plasma Phys., vol. 60, p. e202000022, 2020. https://doi.org/10.1002/ctpp.202000022.Search in Google Scholar

[38] A. Saha and S. Banerjee, Dynamical Systems and Nonlinear Waves in Plasmas, CRC Press, 2021.10.1201/9781003042549Search in Google Scholar

[39] J. Tamang, J. D. Dieu Nkapkop, M. F. Ijaz, et al.., “Dynamical properties of ion-acoustic waves in space plasma and its application to image encryption,” IEEE Access, vol. 9, pp. 18762–18782, 2021. https://doi.org/10.1109/access.2021.3054250.Search in Google Scholar

[40] G. Kaniadakis, “Non-linear kinetics underlying generalized statistics,” Phys. Stat. Mech. Appl., vol. 296, p. 405, 2001. https://doi.org/10.1016/s0378-4371(01)00184-4.Search in Google Scholar

[41] G. Kaniadakis, “Statistical mechanics in the context of special relativity,” Phys. Rev. E, vol. 66, p. 056125, 2002. https://doi.org/10.1103/physreve.66.056125.Search in Google Scholar PubMed

[42] K. Ourabah and M. Tribeche, “Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics,” Phys. Rev. E, vol. 89, p. 062130, 2014. https://doi.org/10.1103/physreve.89.062130.Search in Google Scholar

[43] T. S. Biró and G. Kaniadakis, “Two generalizations of the Boltzmann equation,” Eur. Phys. J. B, vol. 50, p. 3, 2006. https://doi.org/10.1140/epjb/e2006-00112-3.Search in Google Scholar

[44] M. Khalid, S. A. El-Tantawy, and A. Rahman, “Oblique ion acoustic excitations in a magnetoplasma having κ-deformed Kaniadakis distributed electrons,” Astrophys. Space Sci., vol. 365, p. 75, 2020. https://doi.org/10.1007/s10509-020-03787-5.Search in Google Scholar

[45] M. Khalid, A. Khan, M. Khan, F. Hadi, and A. Rahman, “Dust ion acoustic solitary waves in unmagnetized plasma with Kaniadakis distributed electrons,” Braz. J. Phys., vol. 51, p. 60, 2021. https://doi.org/10.1007/s13538-020-00807-1.Search in Google Scholar

[46] A. Saha and J. Tamang, “Qualitative analysis of the positron-acoustic waves in electron-positron-ion plasmas withκdeformed Kaniadakis distributed electrons and hot positrons,” Phys. Plasmas, vol. 24, p. 082101, 2017. https://doi.org/10.1063/1.4994396.Search in Google Scholar

[47] N. S. Saini and P. Sethi, “Dust ion-acoustic cnoidal waves in a plasma with two temperature superthermal electrons,” Phys. Plasmas, vol. 23, p. 103702, 2016. https://doi.org/10.1063/1.4964140.Search in Google Scholar

[48] G. Lapenta, S. Markidis, A. Marocchino, and G. Kaniadakis, “Relaxation of relativistic plasmas under the effect of wave‐particle interactions,” Acta Pathol. Jpn., vol. 666, p. 949, 2007. https://doi.org/10.1086/520326.Search in Google Scholar

[49] J. C. Carvalho, J. D. Do Nascimento, R. Silva, and J. R. De Medeiros, “Non-Gaussian statistics and stellar rotational velocities of main-sequence field stars,” Acta Pathol. Jpn., vol. 696, p. L48, 2009. https://doi.org/10.1088/0004-637x/696/1/l48.Search in Google Scholar

Received: 2021-06-09
Accepted: 2021-07-29
Published Online: 2021-08-23
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0164/html
Scroll to top button