Startseite In search of hyperchaos in a high dimensional unmagnetized quantum plasma
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In search of hyperchaos in a high dimensional unmagnetized quantum plasma

  • Laxmikanta Mandi EMAIL logo , Hayder Natiq , Prasanta Chatterjee , Rustam Ali und Santo Banerjee
Veröffentlicht/Copyright: 3. Dezember 2020

Abstract

The hyperchaos and multistability of electron acoustic waves in a quantum plasma model comprising of nondegenerate cold and degenerate hot electrons and stationary ions are investigated. A six-dimensional dynamical system is constructed from the fluid equations of the model considering traveling wave transformation. The stability analysis of the system is done by finding out the equilibria in the inertia frame. It is interesting to investigate that though the novel system is conservative, it can produce hyperchaos for a set of associated parameters. We have also reported the coexistence of many hyperchaotic attractors as the system is extremely sensitive to the initials. The signature of hyperchaos and coexisting hyperchaos in a conservative quantum plasma system has never been reported before.


Corresponding author: Laxmikanta Mandi, Department of Mathematics, Visva Bharati University, Santiniketan 731235, India and Department of Mathematics, Gushkara Mahavidyalaya, Purba Bardhaman, Santiniketan 713128, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] R. Devaney, An Introduction to Chaotic Dynamical Systems, Menlopark, CA, The Benjamin/Cummings Publishing Company, 1986.Suche in Google Scholar

[2] G. C. Layek, An Introduction to Dynamical Systems and Chaos, New Delhi, Springer, 2015.10.1007/978-81-322-2556-0Suche in Google Scholar

[3] S. He, S. Banerjee, and K. Sun, “Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system,” Eur. Phys. J. Spec. Top., vol. 228, no. 1, pp. 195–207, 2019, https://doi.org/10.1140/epjst/e2019-800166-y.Suche in Google Scholar

[4] V. G. Ivancevic and T. T. Ivancevic, Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals, Berlin Heidelberg, Springer-Verlag, 2008.10.1007/978-3-540-79357-1Suche in Google Scholar

[5] A. Hastings, C. L. Hom, S. Ellner, P. Turchin, H. Charles, and J. Godfray, “Chaos in ecology: Is mother nature a strange attractor?,” Annu. Rev. Ecol. Sysl., vol. 24, pp. 1–33, 1993, https://doi.org/10.1146/annurev.es.24.110193.000245.Suche in Google Scholar

[6] H. Natiq, M. R. K. Ariffin, M. R. M. Said, and S. Banerjee, “Enhancing the sensitivity of a chaos sensor for internet of things,” Internet Things, vol. 7, p. 100083, 2019, https://doi.org/10.1016/j.iot.2019.100083.Suche in Google Scholar

[7] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, CRC Press, 2018.10.1201/9780429492563Suche in Google Scholar

[8] Z. Hua and Y. Zhou, “One-dimensional nonlinear model for producing chaos,” IEEE Trans. Circ. Sys. I: Reg. Paper., vol. 65, no. 1, pp. 235–246, 2017.10.1109/TCSI.2017.2717943Suche in Google Scholar

[9] M. A. Rahim, H. Natiq, N. A. A. Fataf, and S. Banerjee, “Dynamics of a new hyperchaotic system and multistability,” Euro. Phys. J. Plus, vol. 134, no. 10, p. 499, 2019.10.1140/epjp/i2019-13005-5Suche in Google Scholar

[10] H. Natiq, S. Banerjee, S. He, M. R. M. Said, and A. Kilicman, “Designing an M-dimensional nonlinear model for producing hyperchaos,” Soliton. Fractals, vol. 114, pp. 506–515, 2018, https://doi.org/10.1016/j.chaos.2018.08.005.Suche in Google Scholar

[11] O. E. Rossler, “An equation for hyperchaos,” Phys. Lett., vol. 71, pp. 155–157, 1979, https://doi.org/10.1016/0375-9601(79)90150-6.Suche in Google Scholar

[12] T Matsumoto, L Chua, and K Kobayashi, “Hyper chaos: Laboratory experiment and numerical confirmation,” IEEE Trans. Circ. Sys., vol. 33, p. 1143, 1986, https://doi.org/10.1109/tcs.1986.1085862.Suche in Google Scholar

[13] T. Kapitanik and L. O. Chua, “Experimental synchronization of chaos using continuous control,” Int. J. Bifur. Chaos, vol. 04, pp. 477–482, 1994.10.1142/S0218127494000368Suche in Google Scholar

[14] G. C. Layek and N. C. Pati, “Bifurcations and hyperchaos in magnetoconvection of non-newtonian fluids,” Int. J. Bifur. Chaos, vol. 28, p. 1830034, 2018, https://doi.org/10.1142/s0218127418300343.Suche in Google Scholar

[15] G. Ibrahim and S. S. E. H. Elnashaie, “Hyperchaos in acetylcholinesterase enzyme systems,” Chaos, Solit. Fractals, vol. 08, pp. 1977–2007, 1997, https://doi.org/10.1016/s0960-0779(96)00141-5.Suche in Google Scholar

[16] S. Yu, J. Lu, X. Yu, and G. Chen, “Design and implementation of grid multiwing hyperchaotic lorenz system family via switching control and constructing super-heteroclinic loops,” IEEE Trans. Circ. Sys. I: Reg. Pap., vol. 59, no. 5, pp. 1015–1028, 2012, https://doi.org/10.1109/tcsi.2011.2180429.Suche in Google Scholar

[17] H. Natiq, M. R. M. Said, M. R. K. Ariffin, S. He, L. Rondoni, and S. Banerjee, “Self-excited and hidden attractors in a novel chaotic system with complicated multistability,” Euro. Phys. J. Plus, vol. 133, no. 12, p. 557, 2018, https://doi.org/10.1140/epjp/i2018-12360-y.Suche in Google Scholar

[18] H. Natiq, S. Banerjee, M. R. K. Ariffin, and M. R. M. Said, “Can hyperchaotic maps with high complexity produce multistability?,” Chaos: Interdiscipl. J. Nonlinear Sci., vol. 29, p. 1011103, 2019, https://doi.org/10.1063/1.5079886.Suche in Google Scholar PubMed

[19] H. Natiq, S. Banerjee, A. P. Misra, and M. R. M. Said, “Degenerating the butterfly attractor in a plasma perturbation model using nonlinear controllers,” Chaos, Solit. Fractals, vol. 122, pp. 58–68, 2019, https://doi.org/10.1016/j.chaos.2019.03.009.Suche in Google Scholar

[20] W. Gekelman, P. Pribyl, H. Birge-Le et al., “Drift waves and chaos in a LAPTAG plasma physics experiment,” Am. J. Phys., vol. 84, no. 2, 2016, https://doi.org/10.1119/1.4936460.Suche in Google Scholar

[21] C. Stan, C. P. Cristescu, and A. Dumitru, “Chaos and hyperchaos in a symmetrical discharge plasma: Experiment and modelling,” Univ. Politehnica Buchar. Sci. Bull.-Series A-Appl. Math. Phys., vol. 70, pp. 25–30, 2008.Suche in Google Scholar

[22] T. E. Sheridan and W. L. Theisen, “Transition to chaos in a driven dusty plasma,” Phys. Plasmas, vol. 17, 2010, Art no. 013703, https://doi.org/10.1063/1.3298731.Suche in Google Scholar

[23] A. Piel, F. Greiner, T. Klinger, H. Klostermann, and A. Rohde, “Chaos in plasmas: A case study in thermionic discharges, dusty and dirty plasmas,” in Noise, and Chaos in Space and in the Laboratory, Boston, MA, Springer, 1994, pp. 501–521.10.1007/978-1-4615-1829-7_43Suche in Google Scholar

[24] G. K. Sabavath, P. K. Shaw, A. N. S. Iyengar, I. Banerjee, and S. K. Mahapatra, “Experimental investigation of quasiperiodic-chaotic-quasiperiodic-chaotic transition in a direct current magnetron sputtering plasma,” Phys. Plasmas, vol. 22, 2015, Art no. 082121, https://doi.org/10.1063/1.4928902.Suche in Google Scholar

[25] A. Saha and P. Chatterjee, “Solitonic, periodic, quasiperiodic and chaotic structures of dust ion acoustic waves in nonextensive dusty plasmas,” Euro. Phy. J., vol. 69, p. 203, 2015, https://doi.org/10.1140/epjd/e2015-60115-7.Suche in Google Scholar

[26] B. Sahu, B. Pal, S. Poria, and R. Roychoudhury, “Nonlinear dynamics of ion acoustic waves in quantum pair-ion plasmas,” J. Plasma Phys., vol. 81, p. 905810510, 2015, https://doi.org/10.1017/s0022377815000768.Suche in Google Scholar

[27] D. Weixing, H. Wei, W. Xiaodong, and C. X. Yu, “Quasiperiodic transition to chaos in a plasma,” Phys. Rev. Lett., vol. 70, no. 2, p. 170, 1993, https://doi.org/10.1103/physrevlett.70.170.Suche in Google Scholar PubMed

[28] A. P. Misra, D. Ghosh, and A. Roy Chowdhury, “A novel hyperchaos in the quantum Zakharov system for plasmas,” Phys. Lett., vol. 372, no. 9, pp. 1469–1476, 2008, https://doi.org/10.1016/j.physleta.2007.09.054.Suche in Google Scholar

[29] P. A. Markowich, C. A. Ringhofer, and C.s Schmeiser, Semiconductor Equations, Wien, Springer-Verlag, 1990.10.1007/978-3-7091-6961-2Suche in Google Scholar

[30] M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys., vol. 78, no. 2, p. 591, 2006, https://doi.org/10.1103/revmodphys.78.591.Suche in Google Scholar

[31] S. H. Glenzer, O. L. Landen, P. Neumayer, et al., “Observations of plasmons in warm dense matter,” Phys. Rev. Lett., vol. 98, pp. 065002, 2007.10.1103/PhysRevLett.98.065002Suche in Google Scholar PubMed

[32] J. E. Cross, R. Brian, and G. Gianluca, “Scaling of magneto-quantum-radiative hydrodynamic equations: From laser-produced plasmas to astrophysics,” Astrophys. J., vol. 795, no. 1, p. 59, 2014, https://doi.org/10.1088/0004-637x/795/1/59.Suche in Google Scholar

[33] M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk, and J. M. Dawson, “Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes,” Phys. Plasmas, vol. 8, no. 5, pp. 2454–2460, 2001, https://doi.org/10.1063/1.1362533.Suche in Google Scholar

[34] G. Chabrier, D. Saumon, and A. Y. Potekhin, “Dense plasmas in astrophysics: from giant planets to neutron stars,” J. Phys. Math. Gen., vol. 39, no. 17, p. 4411, 2006, https://doi.org/10.1088/0305-4470/39/17/s16.Suche in Google Scholar

[35] A. K. Harding and Lai Dong, Reports on Progress in Physics, vol. 69, UK, IOP Publishing Ltd, 2006, pp. 2631–2708.10.1088/0034-4885/69/9/R03Suche in Google Scholar

[36] S. Chandra, S. N. Paul, and B. Ghosh, “Electron-acoustic solitary waves in a relativistically degenerate quantum plasma with two-temperature electrons,” Astrophys. Space Sci., vol. 343, pp. 213–219, 2013, https://doi.org/10.1007/s10509-012-1097-3.Suche in Google Scholar

[37] B. Sahu, B. Pal, S. Poria, and R. Roychoudhury, “Nonlinear dynamics of ion acoustic waves in quantum pair-ion plasmas,” J. Plasma Phys., vol. 81, no. 5, p. 905810510, 2015, https://doi.org/10.1017/s0022377815000768.Suche in Google Scholar

[38] U. N. Ghosh, P. Chatterjee, and R. Roychoudhury, “Study of possible chaotic, quasi-periodic and periodic structures in quantum dusty plasma,” Phys. Plasmas, vol. 21, pp. 11113705, 2014, https://doi.org/10.1063/1.4901917.Suche in Google Scholar

[39] L. Mandi, A. Saha, and P. Chatterjee, “Dynamics of ion-acoustic waves in Thomas-Fermi plasmas with source ter,” Adv. Space Res., vol. 64, no. 2, pp. 427–435, 2019, https://doi.org/10.1016/j.asr.2019.04.028.Suche in Google Scholar

[40] J. S. Richman and J. Randall Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am. J. Physiol. Heart Circ. Physiol., vol. 278, no. 6, pp. H2039–H2049, 2000, https://doi.org/10.1152/ajpheart.2000.278.6.h2039.Suche in Google Scholar

[41] F. Kaffashi, R. Foglyano, C. G. Wilson, and K. A. Loparo, “The effect of time delay on approximate & sample entropy calculations,” Phys. Nonlinear Phenom., vol. 237, pp. 3069–3074, 2008, https://doi.org/10.1016/j.physd.2008.06.005.Suche in Google Scholar

[42] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining lyapunov exponents from a time series,” Phys. Nonlinear Phenom., vol. 16, no. 3, pp. 285–317, 1985, https://doi.org/10.1016/0167-2789(85)90011-9.Suche in Google Scholar

Received: 2020-07-26
Accepted: 2020-11-06
Published Online: 2020-12-03
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0205/html?lang=de
Button zum nach oben scrollen