Abstract
A theoretical investigation is presented for dust-acoustic (DA), Gardner solitons (GSs), and double layers (DLs) in a magnetized cryogenic plasma system. The plasma consists of inertial negatively charged dust, Boltzmann distributed electrons, and ions, all existing in a quantizing magnetic field. The Korteweg–de Vries (KdV), a modified KdV (mKdV), and Gardner equations are derived by using the reductive perturbation method. It is found that the KdV solitons and DLs are either compressive or rarefactive depending on the plasma parameters, whereas only compressive mKdV and rarefactive GSs solitons exist. These GSs and DLs are significantly modified due to the introduction of the polarization force effect. The present results are considered to be beneficial in understanding the waves propagating at cryogenic temperatures in the experiments of the nano-electromechanical application such as cryogenic etching of silicon that leads to etched silicon and makes it highly anisotropic with a high etch rate, lower side etching, and increases the dry etch resistance of organic masks.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: No fund.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] D. N. Polyakov, L. M. Vasilyak, and V. V. Shumova, “Synergetics of dusty plasma and technological aspects of the application of cryogenic dusty plasma,” Elektron. Obrab. Mater., vol. 2, p. 41, 2015. https://doi.org/10.3103%2FS106837551502012X.10.3103/S106837551502012XSuche in Google Scholar
[2] S. N. Antipov, M. M. Vasilev, and O. F. Petrov, “Non‐Ideal Dust Structures in Cryogenic Complex Plasmas,” Contrib. Plasma Phys., vol. 52203, 2012. https://doi.org/10.1002/ctpp.201100082.10.1002/ctpp.201100082Suche in Google Scholar
[3] R. I. Golyatina and S. A. Maiorov, “Dependence of characteristics of helium ion diffusion and drift in own gas on its temperature,” Bull. Lebedev Phys. Inst., vol. 39, p. 208, 2012, https://doi.org/10.3103/s1068335612070044.10.3103/S1068335612070044Suche in Google Scholar
[4] S. N. Antipova, E. I. Asinovskia, A. V. Kirillina, et al., “Charge and structures of dust particles in a gas discharge at cryogenic temperatures,” J. Exp. Theor. Phys., vol. 106, 2008, https://doi.org/10.1134/s1063776108040237.10.1134/S1063776108040237Suche in Google Scholar
[5] S. S. Duha, S. K. Paul, A. K. Banerjee, and A. A. Mamun, “Low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma,” Pramana - J Phys, vol. 63, p. 1011, 2004, https://doi.org/10.1007/bf02704339.10.1007/BF02704339Suche in Google Scholar
[6] M. A. El-Borie and A. Atteya, “Higher order corrections to dust-acoustic shock waves in a strongly coupled cryogenic dusty plasma,” Phys. Plasmas, vol. 24, p. 113706, 2017, https://doi.org/10.1063/1.5000535.10.1063/1.5000535Suche in Google Scholar
[7] S. A. El-Wakil, A. M. El-Hanbaly, E. K. El-Shewy, and I. E. El-Kamash, “Symmetries and exact solutions of KP equation with an arbitrary nonlinear term,” J. Theor. Appl. Phys., vol. 8, p. 130, 2014, https://doi.org/10.1007/s40094-014-0130-z.10.1007/s40094-014-0130-zSuche in Google Scholar
[8] N. C. Lee, “Small amplitude electron-acoustic double layers and solitons in fully relativistic plasmas of two-temperature electrons,” Phys. Plasmas, vol. 16, p. 042316, 2009, https://doi.org/10.1063/1.3121242.10.1063/1.3121242Suche in Google Scholar
[9] A. M. Wazwaz, “A study on KdV and Gardner equations with time-dependent coefficients and forcing terms,” Appl. Math. Comput., vol. 217, p. 2277, 2010, https://doi.org/10.1016/j.amc.2010.06.038.10.1016/j.amc.2010.06.038Suche in Google Scholar
[10] W. F. El-Taibany, A. Atteya, and S. K. EL-Labany, “Ion-acoustic Gardner solitons in multi-ion degenerate plasma with the effect of polarization and trapping in the presence of a quantizing magnetic field,” Phys. Plasmas, vol. 25, 2018, p. 083704, https://doi.org/10.1063/1.5030368.10.1063/1.5030368Suche in Google Scholar
[11] Y. Wu, D. L. Olynick, A. Goodyear, et al.., “Cryogenic etching of nano-scale silicon trenches with resist masks,” Microelectron. Eng., vol. 88, p. 2785, 2011, https://doi.org/10.1016/j.mee.2010.11.055.10.1016/j.mee.2010.11.055Suche in Google Scholar
[12] R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D, vol. 47, p. 12300, 2014, https://doi.org/10.1088/0022-3727/47/12/123001.10.1088/0022-3727/47/12/123001Suche in Google Scholar
[13] J. Pereira, L. E. Pichon, R. Dussart, et al.., “In situ x-ray photoelectron spectroscopy analysis of SiOxFySiOxFy passivation layer obtained in a SF6/O2SF6/O2 cryoetching process,” Appl. Phys. Lett., vol. 94, no. 7, 2009, p. 071501, https://doi.org/10.1063/1.3085957.10.1063/1.3085957Suche in Google Scholar
[14] M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, et al.., “Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures,” J. Microelectromech. Syst., vol. 11, no. 4, p. 385, 2002, https://doi.org/10.1109/jmems.2002.800928.10.1109/JMEMS.2002.800928Suche in Google Scholar
[15] H. Miao, A. A. Gomella, N. Chedid, L. Chen, and H. Wen, “Fabrication of 200 nm Period Hard X-ray Phase Gratings,” Nano Lett., vol. 14, no. 6, p. 3453, 2014, https://doi.org/10.1021/nl5009713.10.1021/nl5009713Suche in Google Scholar PubMed PubMed Central
[16] S. Tachi, K. Tsujimoto, and S. Okudaira, “Low‐temperature reactive ion etching and microwave plasma etching of silicon,” Appl. Phys. Lett., vol. 52, no. 8, p. 616, 1988, https://doi.org/10.1063/1.99382.10.1063/1.99382Suche in Google Scholar
[17] N. Uotani, J. Kubota, W. Sekine, M. Chikasue, M. Shindo, and O. Ishihara, “Dust charging in collisional plasma in cryogenic environment,” J. Plasma Fusion Res., vol. 9, p. 404, 2010.Suche in Google Scholar
[18] Z. Rahim, M. Adnan, A. Qamar, and A. Saha, “Nonplanar dust-acoustic waves and chaotic motions in Thomas Fermi dusty plasmas,” Phys. Plasmas, vol. 25, 2018, p. 083706, https://doi.org/10.1063/1.5016893.10.1063/1.5016893Suche in Google Scholar
[19] J. Tamang and A. Saha, “Phase plane analysis of the dust-acoustic waves for the Burgers equation in a strongly coupled dusty plasma,” Indian J. Phys., 2020, https://doi.org/10.1007/s12648-020-01733-3.10.1007/s12648-020-01733-3Suche in Google Scholar
[20] N. A. Zedan, A. Atteya, W. F. El-Taibany, and S. K. EL-Labany, “Stability of ion-acoustic solitons in a multi-ion degenerate plasma with the effects of trapping and polarization under the influence of quantizing magnetic field,” Waves. Random. Compl. Media, 2020, https://doi.org/10.1080/17455030.2020.1798560.10.1080/17455030.2020.1798560Suche in Google Scholar
[21] T. Akhter, M. M. Hossain, and A. A. Mamun, “Gardner Solitons and Double Layers in a Multi-Ion Plasma With Degenerate Electrons,” IEEE Trans. Plasma Sci., vol. 41, p. 1607, 2013, https://doi.org/10.1109/tps.2013.2253551.10.1109/TPS.2013.2253551Suche in Google Scholar
[22] A. A. Mamun, K. S. Ashrafi, and P. K. Shukla, “Effects of polarization force and effective dust temperature on dust-acoustic solitary and shock waves in a strongly coupled dusty plasma,” Phys. Rev. E, vol. 82, p. 026405, 2010, https://doi.org/10.1103/physreve.82.026405.10.1103/PhysRevE.82.026405Suche in Google Scholar PubMed
[23] K. S. Ashrafi, A. A. Mamun, and P. K. Shukla, “Time-dependent cylindrical and spherical dust-acoustic solitary and shock waves in a strongly coupled dusty plasma in the presence of polarization force,” Europhys. Lett., vol. 92, p. 15004, 2010, https://doi.org/10.1209/0295-5075/92/15004.10.1209/0295-5075/92/15004Suche in Google Scholar
[24] A. Patidar and P. Sharma, “Dust acoustic shocks in viscous dusty plasma with polarization force,” in AIP Conf. Proc., Melville, NY, USA, AIP Publishing LLC, vol. 2100, no. 1, p. 020168, 2019.10.1063/1.5098722Suche in Google Scholar
[25] M. Asaduzzaman, A. A. Mamun, and K. S. Ashrafi, “Dust-acoustic waves in nonuniform dusty plasma in presence of polarization force,” Phys. Plasmas, vol. 18, p. 113704, 2011, https://doi.org/10.1063/1.3657432.10.1063/1.3657432Suche in Google Scholar
[26] S. Pervin, K. S. Ashrafi, M. S. Zobaer, M. D. Salahuddin, and A. A. Mamun, “Effects of polarization force and nonthermal ions on dust-acoustic (DA) shock waves in a strongly coupled dusty plasma with positively charged dust,” Cent. Eur. J. Phys., vol. 12, no. 11, p. 799, 2014, https://doi.org/10.2478/s11534-013-0240-2.10.2478/s11534-013-0240-2Suche in Google Scholar
[27] B. Vyas, P. Sharma, and S. Jain, “Influence of strong correlation and polarization force of dust on propagation modes of degenerate dusty plasma,” in AIP Conf. Proc., Melville, NY, USA, AIP Publishing LLC, vol. 2100, no. 1, p. 020178, 2019.10.1063/1.5098732Suche in Google Scholar
[28] S. Y. El-Monier, and A. Atteya, “Dynamics of ion-acoustic waves in nonrelativistic magnetized multi-ion quantum plasma: the role of trapped electrons,” Waves. Random. Compl. Media, 2020, https://doi.org/10.1080/17455030.2020.1772522.10.1080/17455030.2020.1772522Suche in Google Scholar
[29] A. A. Mamun and A. Mannan, “Nonplanar double layers in plasmas with opposite polarity dust,” JETP Lett. (Engl. Transl.), vol. 94, p. 356, 2011, https://doi.org/10.1134/s0021364011170115.10.1134/S0021364011170115Suche in Google Scholar
[30] I. Tasnim, M. M. Masud, M. Asaduzzaman, and A. A. Mamun, “Dust-acoustic Gardner solitons and double layers in dusty plasmas with nonthermally distributed ions of two distinct temperatures,” Chaos: Interdis. J. Nonlin. Sci., vol. 23, p. 013147, 2013, https://doi.org/10.1063/1.4794796.10.1063/1.4794796Suche in Google Scholar PubMed
[31] M. S. Alam, M. M. Masud, and A. A. Mamun, “Effects of two-temperature superthermal electrons on dust-ion-acoustic solitary waves and double layers in dusty plasmas,” Astrophys. Space Sci., vol. 349, p. 245, 2014, https://doi.org/10.1007/s10509-013-1639-3.10.1007/s10509-013-1639-3Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- In search of hyperchaos in a high dimensional unmagnetized quantum plasma
- Multistability and chaotic scenario in a quantum pair-ion plasma
- Dust-acoustic Gardner solitons in cryogenic plasma with the effect of polarization in the presence of a quantizing magnetic field
- Quantum Theory
- Trace dynamics and division algebras: towards quantum gravity and unification
- Solid State Physics & Materials Science
- Birefringence and order parameter studies in ferroelectric liquid crystals using laser transmission technique
- Investigations on the g factors and local structure for the trigonal Ce3+ center in YAl3(BO3)4 crystal
- Fiber-optic Fabry–Perot temperature sensor based on the ultraviolet curable glue-filled cavity and two-beam interference principle
- Tuning the properties of RF sputtered tin sulphide thin films and enhanced performance in RF sputtered SnS thin films hetero-junction solar cell devices
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- In search of hyperchaos in a high dimensional unmagnetized quantum plasma
- Multistability and chaotic scenario in a quantum pair-ion plasma
- Dust-acoustic Gardner solitons in cryogenic plasma with the effect of polarization in the presence of a quantizing magnetic field
- Quantum Theory
- Trace dynamics and division algebras: towards quantum gravity and unification
- Solid State Physics & Materials Science
- Birefringence and order parameter studies in ferroelectric liquid crystals using laser transmission technique
- Investigations on the g factors and local structure for the trigonal Ce3+ center in YAl3(BO3)4 crystal
- Fiber-optic Fabry–Perot temperature sensor based on the ultraviolet curable glue-filled cavity and two-beam interference principle
- Tuning the properties of RF sputtered tin sulphide thin films and enhanced performance in RF sputtered SnS thin films hetero-junction solar cell devices