Home Tuning the properties of RF sputtered tin sulphide thin films and enhanced performance in RF sputtered SnS thin films hetero-junction solar cell devices
Article
Licensed
Unlicensed Requires Authentication

Tuning the properties of RF sputtered tin sulphide thin films and enhanced performance in RF sputtered SnS thin films hetero-junction solar cell devices

  • Patrick Akata Nwofe EMAIL logo and Mutsumi Sugiyama
Published/Copyright: December 3, 2020

Abstract

Tin sulphide (SnS) thin films were grown using the RF sputtering techniques. The working pressures (WP) were tuned between 0.70 and 4.00 Pa at fixed RF power of 100 W and deposition time of 2 min. X-ray diffractometry studies indicate that the films crystallized in the orthorhombic crystal structure and were single phase. The crystallite size increased up to a critical working pressure of 1.33 Pa and decreased thereafter with increased WP. Scanning electron microscopy (SEM) indicates that the films exhibit columnar grain structures. Energy dispersive spectroscopy indicates that the films are slightly Sn-rich. Transmittance and reflectance plots exhibits interference pattern, an indication that the films were of uniform thickness. Analysis from the optical data gives optical absorption coefficient (α) > 10cm−1, and direct energy bandgap that exhibits relative decrease with the deposition conditions. Electrical studies from Hall effect measurements indicates that the films possess p-type electrical conductivity, and carrier concentration of 1016 cm−3 for films grown at WP of 1.33 Pa. The RF sputtered SnS thin films grown on Mo-substrates served as absorber layers to fabricate thin film hetero-junction solar cell devices in the substrate configuration with a cadmium sulphide (CdS) window partner. The best device yielded a short circuit current density of 25.94 mA/cm2, open circuit voltage of 0.087 V and an enhanced solar conversion efficiency of 0.60%. A world record value for RF-sputtered SnS/CdS based hetero-junction thin film solar cell devices.


Corresponding author: Patrick Akata Nwofe, Faculty of Science and Technology, Department of Electrical Engineering, Tokyo University of Science, 20641 Yamazaki, Noda278-8510, Japan; and Faculty of Science, Department of Industrial Physics, Ebonyi State University, P.M.B 051, Abakaliki, Nigeria, E-mail:

Acknowledgments

Dr P.A. Nwofe remains grateful to Matsuame International Foundation (MIF), Japan for the award of Post-doctoral Research Fellowship; Sugiyama Laboratory, Tokyo University of Science Japan for host; and Ebonyi State University, Abakaliki, Nigeria for approval of study leave. The authors also acknowledge the contributions of T. Tosuke and T. Funatsu in the SEM measurements, Dr I. Khatri for the TCO and Dr J. Kim for useful discussions.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] O. E. Ogah, K. R. Reddy, G. Zoppi, I. Forbes, and R.W. Miles, “Annealing studies and electrical properties of SnS-based solar cells,” Thin Solid Films, vol. 519, pp. 7425–7428, 2011, https://doi.org/10.1016/j.tsf.2010.12.235.Search in Google Scholar

[2] N. Koteeswara Reddy, M. Devika, and E. S. R. Gopal, “Review on tin (II) sulfide (SnS) material: synthesis, properties, and applications,” Crit. Rev. Solid State Mater. Sci., vol. 40, pp. 359–398, 2015, https://doi.org/10.1080/10408436.2015.1053601.Search in Google Scholar

[3] P. A. Nwofe, “Deposition and characterisation of SnS thin films for application in photovoltaic solar cell devices,” Doctoral dissertation, Northumbria University, 2013.Search in Google Scholar

[4] S. I. Son, D. Shin, Y. G. Son, et al.., “Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells,” J. Alloys Compd., vol. 831, p. 154626, 2020, https://doi.org/10.1016/j.jallcom.2020.154626.Search in Google Scholar

[5] A. Javed, N. Khan, S. Bashir, M. Ahmad, and M. Bashir, “Thickness dependent structural, electrical and optical properties of cubic SnS thin films,” Mater. Chem. Phys., vol. 246, p. 122831, 2020, https://doi.org/10.1016/j.matchemphys.2020.122831.Search in Google Scholar

[6] T. Tosuke and M. Sugiyama, “PL properties and defects of SnS layers based on n-type buffer layers/p-type SnS structures,” Jpn. J. Appl. Phys., vol. 58, p. 051004, 2019, https://doi.org/10.7567/1347-4065/ab0e4a.Search in Google Scholar

[7] T. H. Sajeesh, K. B. Jinesh, M. Rao, C. S. Kartha, and K. P. Vijayakumar, “Defect levels in SnS thin films prepared using chemical spray pyrolysis,” Phys. Stat. Sol., vol. 209, pp. 1274–1278, 2012, https://doi.org/10.1002/pssa.201127442.Search in Google Scholar

[8] M. Kul, “Electrodeposited SnS film for photovoltaic applications,” Vacuum, vol. 107, pp. 213–218, 2014, https://doi.org/10.1016/j.vacuum.2014.02.005.Search in Google Scholar

[9] P. Sinsermsuksakul, L. Sun, S. W. Lee, et al.., “Overcoming efficiency limitations of SnS‐based solar cells,” Adv. Energy Mater., vol. 4, p. 1400496, 2014, https://doi.org/10.1002/aenm.201400496.Search in Google Scholar

[10] P. Kevin, D. J. Lewis, J. Raftery, M. A. Malik, and P. O’Brien, “Thin films of tin (II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin (II) dithiocarbamates as single-source precursors,” J. Cryst. Growth, vol. 415, pp. 93–99, 2015, https://doi.org/10.1016/j.jcrysgro.2014.07.019.Search in Google Scholar

[11] S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande, “SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques,” J. Semiconduct., vol. 37, p. 053001, 2016, https://doi.org/10.1088/1674-4926/37/5/053001.Search in Google Scholar

[12] A. Mukherjee and P. Mitra, “Structural and optical characteristics of SnS thin films prepared by SILAR,” Mater. Sci., vol. 38, pp. 847–851, 2015, https://doi.org/10.1515/msp-2015-0118.Search in Google Scholar

[13] A. J. Clayton, C. M. Charbonneau, W. C. Tsoi, P. J. Siderfin, and S. J. Irvine, “One-step growth of thin film SnS with large grains using MOCVD,” Sci. Technol. Adv. Mater., vol. 19, pp. 153–159, 2018, https://doi.org/10.1080/14686996.2018.1428478.Search in Google Scholar

[14] A. T. Kana, T. G. Hibbert, M. F. Mahon, K. C. Molloy, I. P. Parkin, and L. S. Price, “Organotin unsymmetric dithiocarbamates: synthesis, formation and characterisation of tin (II) sulfide films by atmospheric pressure chemical vapour deposition,” Polyhedron, vol. 20, pp. 2989–2995, 2001, https://doi.org/10.1016/S0277-5387(01)00908-1.Search in Google Scholar

[15] J. Rafael, V. Steinmann, C. Yang, et al.., “Making record-efficiency SnS solar cells by thermal evaporation and atomic layer deposition,” J. Vis. Exp., vol. 99, p. e52705, 2015, https://doi.org/10.3791/52705.Search in Google Scholar PubMed PubMed Central

[16] C. C. Huang, Y. J. Lin, C. Y. Chaung, C. J. Liu, and Y. W. Yang, “Conduction-type control of SnSx films prepared by sol-gel method for different sulphur contents,” J. Alloys Compd., vol. 533, pp. 208–211, 2013, https://doi.org/10.1016/j.jallcom.2012.11.134.Search in Google Scholar

[17] N. K. Reddy, K. Ramesh, R. Ganesan, K. T. R. Reddy, K. R. Gunasekhar, and E. S. R. Gopal, “Synthesis and characterisation of co-evaporated tin sulphide thin films,” Appl. Phys. A, vol. 83, pp. 133–138, 2006, https://doi.org/10.1007/s00339-005-3475-y.Search in Google Scholar

[18] N. K. Reddy, M. Devika, Y. B. Khan, and K. R. Gunasekhar, “Impact of chemical treatment on the surface, structure, optical and electrical properties of SnS thin films,” Appl. Surf. Sci., vol. 268, pp. 317–322, 2013, https://doi.org/10.1016/j.apsusc.2012.12.085.Search in Google Scholar

[19] N. K. Reddy, M. Devika, M. Prashanta, K. Ramesh, and K. R. Gunasekhar, “In situ structural studies on orthorhombic SnS micro-crystals,” Eur. Phys. J. Appl. Phys., vol. 60, p. 10102, 2012, https://doi.org/10.1051/epjap/2012120259.Search in Google Scholar

[20] G. Gnana Kumar, K. Reddy, K. S. Nahm, N. Angulakshmi, and A. M. Stephan, “Synthesis and electrochemical properties of SnS as possible anode materials for lithium batteries,” J. Phys. Chem. Solid., vol. 73, pp. 1187–1190, 2012, https://doi.org/10.1016/j.jpcs.2012.04.013.Search in Google Scholar

[21] Z. Chu and Y. Chen, “Fabrication of SnS thin films by a novel multilayer-based solid-state reaction method,” Semicond. Sci. Technol., vol. 27, p. 035007, 2012, https://doi.org/10.1088/0268-1242/27/3/035007.Search in Google Scholar

[22] H. Zhang, C. Hu, X. Wang, Y. Xi, and X. Li, “Synthesis and photosensitivity of SnS nanobelts,” J. Alloys Compd., vol. 513, pp. 1–5, 2012, https://doi.org/10.1016/j.jallcom.2011.09.096.Search in Google Scholar

[23] M. Salavati-Niasari and F. Davar, “Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid,” J. Alloys Compd., vol. 492, pp. 570–575, 2010, https://doi.org/10.1016/j.jallcom.2009.11.183.Search in Google Scholar

[24] Q. Han, M. Wang, J. Zhu, X. Wu, L. Lu, and X. Wang, “Great influence of a small amount of capping agents on the morphology of SnS particles using xanthate as precursor,” J. Alloys Compd., vol. 509, pp. 2180–2185, 2011, https://doi.org/10.1016/j.jallcom.2010.10.182.Search in Google Scholar

[25] S. S. Hegde, A. G. Kunjomana, K. A. Chandrasekharan, K. Ramesh, and M. Prashantha, “Optical and electrical properties of SnS semiconductor crystals grown by physical vapor deposition technique,” Phys. B Condens. Matter, vol. 406, pp. 1143–1148, 2011, https://doi.org/10.1016/j.physb.2010.12.068.Search in Google Scholar

[26] P. Tang, H. Chen, F. Cao, et al.., “Nanoparticulate SnS as an efficient photocatalyst under visible-light irradiation,” Mater. Lett., vol. 65, pp. 450–452, 2011, https://doi.org/10.1016/j.matlet.2010.10.055.Search in Google Scholar

[27] Z. Xu and Y. Chen, “Synthesis of SnS thin films from nano-multilayer technique,” Energy Procedia, vol. 10, pp. 238–242, 2011, https://doi.org/10.1016/j.egypro.2011.10.184.Search in Google Scholar

[28] S. A. Bashkirov, V. F. Gremenok, and V. A. Ivanov, “Physical properties of SnS thin films fabricated by hot wall deposition,” Semiconductors, vol. 45, pp. 749–752, 2011, https://doi.org/10.1134/S1063782611060030.Search in Google Scholar

[29] F. Jiang, H. Shen, C. Gao, B. Liu, L. Lin, and Z. Shen, “Preparation and properties of SnS film grown by two-stage process,” Appl. Surf. Sci., vol. 257, pp. 4901–4905, 2011, https://doi.org/10.1016/j.apsusc.2010.12.143.Search in Google Scholar

[30] Y. Dong, G. Cai, Q. Zhang, et al.., “Solution-phase deposition of SnS thin films via thermo-reduction of SnS2,” Chem. Commun., vol. 54, pp. 1992–1995, 2018, https://doi.org/10.1039/C7CC09198B.Search in Google Scholar PubMed

[31] P. P. Rajbhandari, A. Chaudhari, and T. P. Dhakal, “Substrate independent oriented 2D growth of SnS thin films from sputtering,” Mater. Res. Express, vol. 6, p. 116427, 2019, https://doi.org/10.1088/2053-1591/ab46de.Search in Google Scholar

[32] K. Assili, K. Alouani, and X. Vilanova, “Impact of deposition temperature on the properties of SnS thin films grown over silicon substrate—comparative study of structural and optical properties with films grown on glass substrates,” Semicond. Sci. Technol., vol. 32, p. 115005, 2017, https://doi.org/10.1088/1361-6641/aa8b2c.Search in Google Scholar

[33] M. Devika, N. Koteeswara Reddy, M. Prashantha, et al.., “The physical properties of SnS films grown on lattice‐matched and amorphous substrates,” Phys. Stat. Sol., vol. 207, pp. 1864–1869, 2010, https://doi.org/10.1002/pssa.200925379.Search in Google Scholar

[34] P. A. Nwofe, K. T. Ramakrishna Reddy, G. Sreedevi, J. K. Tan, and R. W. Miles, “Structural, optical, and electro-optical properties of thermally evaporated tin sulphide layers,” Jpn. J. Appl. Phys., vol. 51, p. 10NC36, 2012, https://doi.org/10.1143/JJAP.51.10NC36.Search in Google Scholar

[35] S. Gedi, V. R. M. Reddy, S. Alhammadi, et al.., “Influence of deposition temperature on the efficiency of SnS solar cells,” Sol. Energy, vol. 184, pp. 305–314, 2019, https://doi.org/10.1016/j.solener.2019.04.010.Search in Google Scholar

[36] J. Y. Cho, S. Sinha, M. G. Gang, and J. Heo, “Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency,” J. Alloys Compd., vol. 796, pp. 160–166, 2019, https://doi.org/10.1016/j.jallcom.2019.05.035.Search in Google Scholar

[37] A. M. S. Arulanantham, S. Valanarasu, A. Kathalingam, and K. Jeyadheepan, “Solution volume effect on structural, optical and photovoltaic properties of nebulizer spray deposited SnS thin films,” J. Mater. Sci. Mater. Electron., vol. 29, pp. 12899–12909, 2018, https://doi.org/10.1007/s10854-018-9409-1.Search in Google Scholar

[38] M. Devika, N. K. Reddy, and K. R. Gunasekhar, “Structural, electrical, and optical properties of as-grown and heat treated ultra-thin SnS films,” Thin Solid Films, vol. 520, pp. 628–632, 2011, https://doi.org/10.1016/j.tsf.2011.07.074.Search in Google Scholar

[39] A. M. S. Arulanantham, S. Valanarasu, K. Jeyadheepan, and A. Kathalingam, “Effect of thermal annealing on nebulizer spray deposited tin sulfide thin films and their application in a transparent oxide/CdS/SnS heterostructure,” Thin Solid Films, vol. 666, pp. 85–93, 2018, https://doi.org/10.1016/j.tsf.2018.09.014.Search in Google Scholar

[40] B. Ghosh, R. Bhattacharjee, P. Banerjee, and S. Das, “Structural and optoelectronic properties of vacuum evaporated SnS thin films annealed in argon ambient,” Appl. Surf. Sci., vol. 257, pp. 3670–3676, 2011, https://doi.org/10.1016/j.apsusc.2010.11.103.Search in Google Scholar

[41] P. E. Agbo, P. A. Nwofe, and L. O. Odo, “Analysis on energy bandgap of zinc sulphide (zns) thin films grown by solution growth technique,” Chalcogenide Lett., vol. 14, pp. 357–3636, 2017.Search in Google Scholar

[42] Z. Xizhu, “Atomic layer deposition mechanisms and crystal structures of tin sulfide and other issues related to tin sulfide solar cells,” Ph.D diss, Harvard University Cambridge, Massachusetts, 2018.Search in Google Scholar

[43] P. A. Nwofe, “Influence of film thickness on the optical properties of antimony sulphide thin films grown by the solution growth technique,” Eur. J. Appl. Eng. Sci. Res., vol. 4, pp. 1–6, 2015.Search in Google Scholar

[44] K. Jeganath, N. J. Choudhari, G. S. Pai, A. Rao, and Y. Raviprakash, “Role of substrate temperature on spray pyrolysed metastable π-SnS thin films,” Mater. Sci. Semicond. Process., vol. 113, p. 105050, 2020, https://doi.org/10.1016/j.mssp.2020.105050.Search in Google Scholar

[45] A. Abou Shama and H. M. Zeyada, “Electronic dielectric constants of thermally evaporated SnS thin films,” Opt. Mater., vol. 24, pp. 555–561, 2003, https://doi.org/10.1016/S0925-3467(03)00138-1.Search in Google Scholar

[46] V. Robles, J. F. Trigo, C. Guillén, and J. Herrero, “Structural, chemical, and optical properties of tin sulfide thin films as controlled by the growth temperature during co-evaporation and subsequent annealing,” J. Mater. Sci., vol. 48, pp. 3943–3949, 2013, https://doi.org/10.1007/s10853-013-7198-8.Search in Google Scholar

[47] T. H. Sajeesh, A. R. Warrier, C. S. Kartha, and K. P. Vijayakumar, “Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS,” Thin Solid Films, vol. 518, pp. 4370–4374, 2010, https://doi.org/10.1016/j.tsf.2010.01.040.Search in Google Scholar

[48] M. Gurubhaskar, T. Narayana, M. Raghavender, G. Hema Chandra, P. Prathap, and Y. P. Venkata Subbaiah, “Influence of sulfurization time on two step grown SnS thin films,” Vacuum, vol. 155, pp. 318–324, 2018, https://doi.org/10.1016/j.vacuum.2018.06.011.Search in Google Scholar

[49] I. Ammar, A. Gassoumi, A. Akkari, F. Delpech, S. Ammar, and N. Turki-Kamoun, “Deposition of SnS thin films by chemical bath deposition method: effect of surfactants,” Eur. Phys. J. Plus, vol. 134, pp. 1–8, 2019, https://doi.org/10.1140/epjp/i2019-12976-3.Search in Google Scholar

[50] A. R. Warrier, T. H. Sajeesh, C. S. Kartha, and K. P. Vijayakumar, “Determination of thermal and electronic carrier transport properties of SnS thin films using photothermal beam deflection technique,” Mater. Res. Bull., vol. 47, pp. 3758–3763, 2012, https://doi.org/10.1016/j.materresbull.2012.06.025.Search in Google Scholar

[51] R. E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, and Y. Golan, “Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide,” RSC Adv., vol. 6, pp. 5848–5855, 2016, https://doi.org/10.1039/C5RA23092F.Search in Google Scholar

[52] L. Yarce, E. Andres, R. Trujillo, et al.., “The morphological changes of SnS thin films deposited on stainless-steel substrates at low temperatures,” Eur. J. Eng. Res. Sci., vol. 4, pp. 1–4, 2019, https://doi.org/10.24018/ejers.2019.4.1.980.Search in Google Scholar

[53] A. Yago, T. Kibishi, Y. Akaki, et al.., “Influence of Sn/S composition ratio on SnS thin-film solar cells produced via co-evaporation method,” Jpn. J. Appl. Phys., vol. 57, no. 2S2, p. 02CE08, 2018, https://doi.org/10.7567/JJAP.57.02CE08.Search in Google Scholar

[54] A. M. S. Arulanantham, S. Valanarasu, K. Jeyadheepan, V. Ganesh, and M. Shkir, “Development of SnS (FTO/CdS/SnS) thin films by nebulizer spray pyrolysis (NSP) for solar cell applications,” J. Mol. Struct., vol. 1152, pp. 137–144, 2018, https://doi.org/10.1016/j.molstruc.2017.09.077.Search in Google Scholar

[55] V. K. Arepalli, Y. Shin, and J. Kim, “Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films,” Opt. Mater., vol. 88, pp. 594–600, 2019, https://doi.org/10.1016/j.optmat.2018.12.016.Search in Google Scholar

[56] A. de Kergommeaux, J. Faure-Vincent, A. Pron, R. de Bettignies, and P. Reiss, “SnS thin films realized from colloidal nanocrystal inks,” Thin Solid Films, vol. 535, pp. 376–379, 2013, https://doi.org/10.1016/j.tsf.2012.11.068.Search in Google Scholar

[57] M. Patel, I. Mukhopadhyay, and A. Ray, “Annealing influence over structural and optical properties of sprayed SnS thin films,” Opt. Mater., vol. 35, pp. 1693–1699, 2013, https://doi.org/10.1016/j.optmat.2013.04.034.Search in Google Scholar

[58] A. Anitha Ezhil Mangaiyar Karasi, S. Seshadri, and L. Amalraj, “Effect of tin precursor concentration on physical properties of spray deposited tin sulfide thin films,” Int. J. Recent Sci. Res., vol. 10, pp. 31756–31762, 2019, https://doi.org/10.24327/ijrsr.2019.1004.3330.Search in Google Scholar

[59] L. Zhao, Y. Di, C. Yan, et al.., “In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells,” RSC Adv., vol. 6, pp. 4108–4115, 2016, https://doi.org/10.1039/C5RA24144H.Search in Google Scholar

[60] V. K. Arepalli and J. Kim, “Effect of substrate temperature on the structural and optical properties of radio frequency sputtered tin sulfide thin films for solar cell application,” Thin Solid Films, vol. 666, pp. 34–39, 2018, https://doi.org/10.1016/j.tsf.2018.09.009.Search in Google Scholar

[61] J. Malaquias, P. A. Fernandes, P. M. P. Salomé, and A. F. Da Cunha, “Assessment of the potential of tin sulphide thin films prepared by sulphurization of metallic precursors as cell absorbers,” Thin Solid Films, vol. 519, pp. 7416–7420, 2011, https://doi.org/10.1016/j.tsf.2011.01.393.Search in Google Scholar

[62] T. R. Rana, S. Y. Kim, and J. Ho Kim, “Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell,” Curr. Appl. Phys., vol. 18, pp. 663–666, 2018, https://doi.org/10.1016/j.cap.2018.03.024.Search in Google Scholar

[63] J. I. Pankove, Optical Processes in Semiconductors, Englewood Cliffs, New Jersey, Prentice-Hall, 1971.Search in Google Scholar

[64] J. Tauc, Amorphous and Liquid Semiconductors, London, Plenum Press, 1974.10.1007/978-1-4615-8705-7Search in Google Scholar

[65] E. A. Davis and N. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. A, vol. 22, pp. 0903–0922, 1970, https://doi.org/10.1080/14786437008221061.Search in Google Scholar

[66] S. M. Sze, Semiconductor Devices Physics and Technology, New York, John Wiley & Sons, 1985.Search in Google Scholar

[67] D. Hwang, “Structural and optical properties of SnS thin films deposited by RF magnetron sputtering,” J. Korean Inst. Surf. Eng., vol. 51, pp. 126–132, 2018, https://doi.org/10.5695/JKISE.2018.51.2.126.Search in Google Scholar

[68] M. Devika, K. T. Ramakrishna Reddy, N. Koteeswara Reddy, et al.., “Microstructure dependent physical properties of evaporated tin sulfide films,” J. Appl. Phys., vol. 100, p. 023518, 2006, https://doi.org/10.1063/1.2216790.Search in Google Scholar

[69] K. Reddy, M. Devika, and K. R. Gunasekhar, “Stable and low resistive zinc contacts for SnS based optoelectronic devices,” Thin Solid Films, vol. 558, pp. 326–329, 2014, https://doi.org/10.1016/j.tsf.2014.02.083.Search in Google Scholar

[70] V. E. González-Flores, R. N. Mohan, R. Ballinas-Morales, M. T. S. Nair, and P. K. Nair, “Thin film solar cells of chemically deposited SnS of cubic and orthorhombic structures,” Thin Solid Films, vol. 672, pp. 62–65, 2019, https://doi.org/10.1016/j.tsf.2018.12.044.Search in Google Scholar

[71] V. E. González Flores, M. T. S. Nair, and P. K. Nair, “Thermal stability of ’metastable’ cubic tin sulfide and its relevance to applications,” Semicond. Sci. Technol., vol. 33, p. 075011, 2018, https://doi.org/10.1088/1361-6641/aac524.Search in Google Scholar

[72] R. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films,” J. Phys. E Sci. Instrum., vol. 17, p. 896, 1984, https://doi.org/10.1088/0022-3735/17/10/023.Search in Google Scholar

[73] R. Essajai, A. El Hat, H. Shaili, et al.., “Structural, optical and electrical properties of SnxSy thin films deposited by spray pyrolysis technique,” Mater. Res. Innovat., pp. 1–7, 2020, https://doi.org/10.1080/14328917.2020.1723981.Search in Google Scholar

[74] S. S. Hegde, A. G. Kunjomana, P. Murahari, B. K. Prasad, and K. Ramesh, “Vacuum annealed tin sulfide (SnS) thin films for solar cell applications,” Surf. Interfaces, vol. 10, pp. 78–84, 2018, https://doi.org/10.1016/j.surfin.2017.12.003.Search in Google Scholar

[75] E. R. Shaaban, M. S. Abd El-Sadek, M. El-Hagary, and I. S. Yahia, “Spectroscopic ellipsometry investigations of the optical constants of nanocrystalline SnS thin films,” Phys. Scr., vol. 86, p. 015702, 2012, https://doi.org/10.1088/0031-8949/86/01/015702.Search in Google Scholar

[76] K. Assili, K. Alouani, and X. Vilanova, “Structural and optical properties of tin (II) sulfide thin films deposited using organophosphorus precursor (Ph3PS),” Semicond. Sci. Technol., vol. 32, p. 025002, 2017, https://doi.org/10.1088/1361-6641/32/2/025002.Search in Google Scholar

[77] T. Srinivasa Reddy, M. C. Santhosh Kumar, and S. Shaji, “Deposition rate dependant formation and properties of Sn2S3 and SnS thin films by co-evaporation,” Mater. Res. Express, vol. 4, p. 046404, 2017, https://doi.org/10.1088/2053-1591/aa6b71.Search in Google Scholar

[78] S. Ur Rehman, F. K. Butt, B. Ul Haq, S. AlFaify, W. S. Khan, and C. Li, “Exploring novel phase of tin sulfide for photon/energy harvesting materials,” Sol. Energy, vol. 169, pp. 648–657, 2018, https://doi.org/10.1016/j.solener.2018.05.006.Search in Google Scholar

[79] A. M. S. Arulanantham, S. Valanarasu, A. Kathalingam, M. Shkir, and H.-S. Kim, “Influence of substrate temperature on the SnS absorber thin films and SnS/CdS heterostructure prepared through aerosol assisted nebulizer spray pyrolysis,” Mater. Res. Express, vol. 6, p. 026412, 2018, https://doi.org/10.1088/2053-1591/aaed1b.Search in Google Scholar

[80] G. Sreedevi, V. R. M. Reddy, C. Park, J. Chan-Wook, and K. T. Ramakrishna Reddy, “Comprehensive optical studies on SnS layers synthesized by chemical bath deposition,” Opt. Mater., vol. 42, pp. 468–475, 2015, https://doi.org/10.1016/j.optmat.2015.01.043.Search in Google Scholar

[81] N. Youssef, B. Hartiti, A. Batan, F. Reniers, C. Buess-Herman, T. Segato, S. Fadili, M. Siadat, and P. Thévenin, “Elaboration and characterization of SnS thin film for gas sensors application,” Multidisciplinary Digital Publishing Inst. Proc., vol. 14, p. 4, 2019, https://doi.org/10.3390/proceedings2019014004.Search in Google Scholar

[82] T. Daniel, U. Uno, K. Isah, and U. Ahmadu, “Tuning of SnS thin film conductivity on annealing in an open air environment for transistor application,” East Eur. J. Phys., vol. 2, pp. 94–103, 2020, https://doi.org/10.26565/2312-4334-2020-2-08.Search in Google Scholar

[83] N. Spalatu, J. Hiie, R. Kaupmees, et al.., “Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux,” ACS Appl. Mater. Interfaces, vol. 11, pp. 17539–17554, 2019, https://doi.org/10.1021/acsami.9b03213.Search in Google Scholar PubMed

[84] E. B. Díaz-Cruz, L. González-Espinoza, E. Regalado-Pérez, O. A. Castelo-González, M. C. Arenas-Arrocena, and H. Hu, “Tuning optoelectronic properties of SnS thin films by a kinetically controllable low temperature microwave hydrothermal method,” J. Alloys Compd., vol. 797, pp. 537–547, 2019, https://doi.org/10.1016/j.jallcom.2019.05.002.Search in Google Scholar

[85] H. Choi, J. Lee, S. Shin, et al.., “Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics,” Nanotechnology, vol. 29, p. 215201, 2018, https://doi.org/10.1088/1361-6528/aab3c1.Search in Google Scholar PubMed

[86] K. Hartman, J. L. Johnson, M. I. Bertoni, et al.., “SnS thin films by RF sputtering at room temperature,” Thin Solid Films, vol. 519, pp. 7421–7424, 2011, https://doi.org/10.1016/j.tsf.2010.12.186.Search in Google Scholar

[87] R. E. Banai, H. Lee, M. A. Motyka, et al.., “Optical properties of sputtered SnS thin films for photovoltaic absorbers,” IEEE J.Photovolt, vol. 3, pp. 1084–1089, 2013, https://doi.org/10.1109/JPHOTOV.2013.2251758.Search in Google Scholar

[88] M. G. Sousa, A. F. Da Cunha, and P. A. Fernandes, “Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films,” J. Alloys Compd., vol. 592, pp. 80–85, 2014, https://doi.org/10.1016/j.jallcom.2013.12.200.Search in Google Scholar

[89] D. Mare, Simone, D. Menossi, et al.., “SnS thin film solar cells: perspectives and limitations,” Coatings, vol. 2, p. 34, 2017, https://doi.org/10.3390/coatings7020034.Search in Google Scholar

[90] E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, “Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition,” Appl. Surf. Sci., vol. 257, pp. 1189–1195, 2010, https://doi.org/10.1016/j.apsusc.2010.07.104.Search in Google Scholar

[91] T. H. Sajeesh, K. B. Jinesh, C. S. Kartha, and K. P. Vijayakumar, “Role of pH of precursor solution in taming the material properties of spray pyrolysed SnS thin films,” Appl. Surf. Sci., vol. 258, pp. 6870–6875, 2012, https://doi.org/10.1016/j.apsusc.2012.03.121.Search in Google Scholar

[92] S. S. Hegde, A. G. Kunjomana, M. Prashantha, C. Kumar, and K. Ramesh, “Photovoltaic structures using thermally evaporated SnS and CdS thin films,” Thin Solid Films, vol. 545, pp. 543–547, 2013, https://doi.org/10.1016/j.tsf.2013.08.078.Search in Google Scholar

[93] U. Chalapathi, B. Poornaprakash, and S. H. Park, “Chemically deposited cubic SnS thin films for solar cell applications,” Sol. Energy, vol. 139, pp. 238–248, 2016, https://doi.org/10.1016/j.solener.2016.09.046.Search in Google Scholar

[94] U. Chalapathi, B. Poornaprakash, W. J. Choi, and S. H. Park, “Ammonia (aq)-enhanced growth of cubic SnS thin films by chemical bath deposition for solar cell applications,” Appl. Phys. A, vol. 126, pp. 1–9, 2020, https://doi.org/10.1007/s00339-020-03763-4.Search in Google Scholar

[95] E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, and C. Gumus, “Properties of p-type SnS thin films prepared by chemical bath deposition,” Chalcogenide Lett., vol. 7, pp. 685–694, 2010.Search in Google Scholar

[96] A. Basak, A. Hati, A. Mondal, U. P. Singh, and S. K. Taheruddin, “Effect of substrate on the structural, optical and electrical properties of SnS thin films grown by thermal evaporation method,” Thin Solid Films, vol. 645, pp. 97–101, 2018, https://doi.org/10.1016/j.tsf.2017.10.039.Search in Google Scholar

[97] B. Barman, K. V. Bangera, and G. K. Shivakumar, “Evaluation of semiconducting p-type tin sulfide thin films for photodetector applications,” Superlattice. Microst., vol. 133, p. 106215, 2019, https://doi.org/10.1016/j.spmi.2019.106215.Search in Google Scholar

[98] F. Y. Ran, Z. Xiao, H. Hiramatsu, K. Ide, H. Hosono, and T. Kamiya, “SnS thin films prepared by H2S-free process and its p-type thin film transistor,” AIP Adv., vol. 6, p. 015112, 2016, https://doi.org/10.1063/1.4940931.Search in Google Scholar

[99] J. B. Johnson, H. Jones, B. S. Latham, J. D. Parker, R. D. Engelken, and C. Barber, “Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films,” Semicond. Sci. Technol., vol. 14, p. 501, 1999, https://doi.org/10.1088/0268-1242/14/6/303.Search in Google Scholar

[100] M. Messaoudi, M. S. Aida, N. Attaf, and S. Satta, “SnS thin films deposition by spray pyrolysis: solvent influence,” Chalcogenide Lett., vol. 16, pp. 157–162, 2019.Search in Google Scholar

[101] M. Cheraghizade, F. Jamali-Sheini, and P. Shabani, “Annealing temperature of nanostructured SnS on the role of the absorber layer,” Mater. Sci. Semicond. Process., vol. 90, pp. 120–128, 2019, https://doi.org/10.1016/j.mssp.2018.10.018.Search in Google Scholar

[102] E. Barrios-Salgado, L. A. Rodríguez-Guadarrama, A. R. Garcia-Angelmo, J. Campos Álvarez, M. T. S. Nair, and P. K. Nair, “Large cubic tin sulfide–tin selenide thin film stacks for energy conversion,” Thin Solid Films, vol. 615, pp. 415–422, 2016, https://doi.org/10.1016/j.tsf.2016.07.048.Search in Google Scholar

[103] I. Y. Ahmet, M. Guc, Y. Sánchez, et al.., “Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells,” RSC Adv., vol. 9, pp. 14899–14909, 2019, https://doi.org/10.1039/C9RA01938C.Search in Google Scholar

[104] T. R. Rana, S. Y. Kim, and J. Ho Kim, “Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell,” Curr. Appl. Phys., vol. 18, pp. 663–666, 2018, https://doi.org/10.1016/j.cap.2018.03.024.Search in Google Scholar

Received: 2020-09-30
Accepted: 2020-11-15
Published Online: 2020-12-03
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0275/html
Scroll to top button