Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
-
Kevin Gooniah
, Hanshika Jhurree , Dooshika Shiwpursad , Lydia Rhyman , Ibrahim A. Alswaidan , Veikko Uahengo , Radhakhrishna Somanah und Ponnadurai Ramasami
Abstract
This research investigates molecular parameters such as equilibrium structure, dipole moment, rotational constant, harmonic frequency, adiabatic electron affinity, atomisation energy, and ionisation potential of some identified diatomic molecules in interstellar/circumstellar medium. A theoretical understanding of the molecular properties of the investigated molecules is obtained using the popular B3LYP hybrid density functional with four basis sets: 6-311++G(2df,2pd), 6-311++G(3df,3pd), cc-pVTZ, and aug-cc-pVTZ. The computed data conform very well with available experimental and theoretical results. The accuracy of the B3LYP functional on the studied molecular systems are ±0.006 Å for the bond length, ±0.044 D for the dipole moment, ±0.854 GHz for the rotational constant, ±59 cm−1 for the harmonic frequency, ±2.03 kcal/mol for the electron affinity, ±4.74 kcal/mol for atomisation energy, and ±3.19 kcal/mol for ionisation potential.
Acknowledgements
The authors acknowledge the facilities from their respective universities. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for the research group project no. RGP VPP-207.
References
[1] J. M. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge University Press, Cambridge 2003.10.1017/CBO9780511814808Suche in Google Scholar
[2] P. T. Snow and J. B. McCall, Annu. Rev. Astron. Astr. 44, 367 (2006).10.1146/annurev.astro.43.072103.150624Suche in Google Scholar
[3] W. Klemperer, P. Natl. Acad. Sci. USA 103, 12232 (2006).10.1073/pnas.0605352103Suche in Google Scholar PubMed PubMed Central
[4] P. Botchwina, Phys. Chem. Chem. Phys. 5, 3337 (2003).10.1039/b303753nSuche in Google Scholar
[5] W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH, Germany 2001.10.1002/3527600043Suche in Google Scholar
[6] J. C. Rienstra-Kiracofe, G. S. Tschumper, and H. F. Schaefer III, Chem. Rev. 102, 231 (2002).10.1021/cr990044uSuche in Google Scholar PubMed
[7] S. J. Blanksby, A. M. McAnoy, S. Dua, and J. H. Bowie, Mon. Not. R. Astron. Soc. 328, 89 (2001).10.1046/j.1365-8711.2001.04836.xSuche in Google Scholar
[8] K. C. Lau and C. Y. Ng, J. Chem. Phys. 122, 224310 (2005).10.1063/1.1926274Suche in Google Scholar PubMed
[9] B. Larsson, R. Liseau, L. Pagani, P. Bergman, P. Bernath, et al., Astron. Astr. 466, 999 (2007).10.1051/0004-6361:20065500Suche in Google Scholar
[10] D. A. Neufeld, P. Schilke, K. M. Menten, M. G. Wolfire, J. H. Black, et al., Astron. Astr. 454, L37 (2006).10.1051/0004-6361:200600015Suche in Google Scholar
[11] C. M. Walmsley, R. Bachiller, G. Pineau des Forêts, and P. Schilke, Astrophys. J. 566, L109 (2002).10.1086/339694Suche in Google Scholar
[12] D. H. Wooden, S. B. Charnley, and P. Ehrenfreund, Composition and Evolution of Interstellar Clouds, Comets II, University of Arizona Press, USA 2004.10.2307/j.ctv1v7zdq5.10Suche in Google Scholar
[13] W. W. Duley, T. J. Millar, and D. A. Williams, Mon. Not. R. Astron. Soc. 192, 945 (1980).Suche in Google Scholar
[14] I. Yamamura, K. Kawaguchi, and S. T. Ridgway, Astrophys. J. 528, L33 (2000).10.1086/312420Suche in Google Scholar PubMed
[15] K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., New York 1979.10.1007/978-1-4757-0961-2Suche in Google Scholar
[16] T. A. Dixon and R. C. Woods, Phys. Rev. Lett. 34, 61 (1975).10.1103/PhysRevLett.34.61Suche in Google Scholar
[17] F. J. Lovas, Astrophys. J. 193, 265 (1974).10.1086/153157Suche in Google Scholar
[18] S. A. Rice and W. Klemperer, J. Chem. Phys. 27, 573 (1957).10.1063/1.1743772Suche in Google Scholar
[19] R. E. Honig, J. Chem. Phys. 22, 126 (1954).10.1063/1.1739819Suche in Google Scholar
[20] G. Drechsler, U. Boesl, C. Bassmann, and E. W. Schlag, J. Chem. Phys. 107, 2284 (1997).10.1063/1.474622Suche in Google Scholar
[21] S. M. Burnett, C. S. Feigerle, A. E. Stevens, and C. W. Lineberger, J. Phys. Chem. 86, 4486 (1982).10.1021/j100220a008Suche in Google Scholar
[22] M. L. Polak, B. L. Fiala, W. C. Lineberger, and K. M. Ervin, J. Chem. Phys. 94, 6926 (1991).10.1063/1.460223Suche in Google Scholar
[23] V. H. Dibeler, R. M. Reese, and J. L. Franklin, J. Am. Chem. Soc. 83, 1813 (1961).10.1021/ja01469a011Suche in Google Scholar
[24] S. Smoes, C. E. Myers, and J. Drowart, Chem. Phys. Lett. 8, 10 (1971).10.1016/0009-2614(71)80562-6Suche in Google Scholar
[25] G. Verhaegen, F. E. Stafford, and J. Drowart, J. Chem. Phys. 40, 1622 (1964).10.1063/1.1725370Suche in Google Scholar
[26] H. Bloom and D. J. Williams, J. Chem. Phys. 75, 4636 (1981).10.1063/1.442579Suche in Google Scholar
[27] C. E. Melton, J. Chem. Phys. 45, 4414 (1966).10.1063/1.1727520Suche in Google Scholar
[28] D. J. Williams, Aust. J. Chem. 35, 1531 (1982).10.1071/CH9821531Suche in Google Scholar
[29] H. Nakagawa, M. Asano, and K. Kubo, J. Nucl. Mater. 102, 292 (1981).10.1016/0022-3115(81)90496-7Suche in Google Scholar
[30] V. L. Tal’roze, N. I. Butkovskaya, M. N. Larichev, I. O. Leipunskii, I. I. Morozov, et al., Adv. Mass Spectrom. 7, 693 (1978).Suche in Google Scholar
[31] D. L. Hildenbrand, Chem. Phys. Lett. 34, 352 (1975).10.1016/0009-2614(75)85291-2Suche in Google Scholar
[32] R-G. Wang, M. A. Dillon, and D. Spence, J. Chem. Phys. 80, 63 (1984).10.1063/1.446407Suche in Google Scholar
[33] J. M. Dyke, A. Morris, and I. R. Trickle, J. Chem. Soc. Faraday Trans. 2. 73, 147 (1977).10.1039/f29777300147Suche in Google Scholar
[34] D. K. Bulgin, J. M. Dyke, and A. Morris, J. Chem. Soc. Faraday Trans. 2. 73, 983 (1977).10.1039/F29777300983Suche in Google Scholar
[35] M. C. R. Cockett, J. M. Dyke, A. Morris, and M. H. Z. Niavaran, J. Chem. Soc. Faraday Trans. 2. 85, 75 (1989).10.1039/F29898500075Suche in Google Scholar
[36] G. Bieri, A. Schmelzer, L. Asbrink, and M. Jonsson, Chem. Phys. 49, 213 (1980).10.1016/0301-0104(80)85258-XSuche in Google Scholar
[37] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).10.1063/1.460205Suche in Google Scholar
[38] S. Midda and A. K. Das, Eur. Phys. J. D, 27, 109 (2003).10.1140/epjd/e2003-00257-7Suche in Google Scholar
[39] M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).10.1063/1.447079Suche in Google Scholar
[40] T. Clark, J. Chandrasekhar, W. Spitznagel, and P. V. R. Schleyer, J. Comp. Chem. 4, 294 (1983).10.1002/jcc.540040303Suche in Google Scholar
[41] P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 197, 499 (1992).10.1016/0009-2614(92)85807-MSuche in Google Scholar
[42] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).10.1063/1.456153Suche in Google Scholar
[43] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).10.1063/1.462569Suche in Google Scholar
[44] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).10.1063/1.464303Suche in Google Scholar
[45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA, 2003.Suche in Google Scholar
[46] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2016.Suche in Google Scholar
[47] R. D. Nelson Jr., D. R. Lide, and A. A. Maryott, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, NSRDS-NBS10, Washington, 1967.10.6028/NBS.NSRDS.10Suche in Google Scholar
[48] D. R. Lide, Jr., J. Chem. Phys. 42, 1013 (1965).10.1063/1.1696035Suche in Google Scholar
[49] P. L. Clouser and W. Gordy, Phys. Rev. A, 134, 863 (1964).10.1103/PhysRev.134.A863Suche in Google Scholar
[50] T. Amano, S. Saito, E. Hirota, and Y. Morino, J. Mol. Spectrosc. 32, 97 (1969).10.1016/0022-2852(69)90145-3Suche in Google Scholar
[51] J. Raymonda and W. Klemperer, J. Chem. Phys. 55, 232 (1971).10.1063/1.1675513Suche in Google Scholar
[52] J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, J. Chem. Phys. 52, 3458 (1970).10.1063/1.1673510Suche in Google Scholar
[53] J. Hoeft, F. J. Lovas, E. Tiemann, and T. Törring, Z. Naturforsch. A 24, 1422 (1969).10.1515/zna-1969-0932Suche in Google Scholar
[54] W. L. Meerts and A. Dymanus, Can. J. Phys. 53, 2123 (1975).10.1139/p75-261Suche in Google Scholar
[55] R. C. Fortenberry, J. Phys. Chem. A 119, 9941 (2015).10.1021/acs.jpca.5b05056Suche in Google Scholar
[56] M. Bogey, C. Demuynk, and J. L. Destombes, J. Chem. Phys. 79, 4704 (1983).10.1063/1.445611Suche in Google Scholar
[57] T. Kröchertskothen, H. Knöckel, and E. Tiemann, Mol. Phys. 62, 1031 (1987).10.1080/00268978700102761Suche in Google Scholar
[58] I. R. Marenin and H. R. Johnson, J. Quant. Spectrosc. RA 10, 305 (1970).10.1016/0022-4073(70)90097-XSuche in Google Scholar
[59] C. Yamada, F. Masaharu, and E. Hirota, J. Chem. Phys. 90, 3033 (1989).10.1063/1.455905Suche in Google Scholar
[60] T. Shimanouchi, J. Phys. Chem. Ref. Data 1, 189 (1972).10.1063/1.3253098Suche in Google Scholar
[61] J. Hoeft, E. Tiemann, and T. Torring, Z. Naturforsch. 27, 703 (1972).10.1515/zna-1972-0424Suche in Google Scholar
[62] M. E. Jacox, J. Phys. Chem. Ref. Data, Monograph 3, 461 (1994).Suche in Google Scholar
[63] K. M. A. Refaey and J. L. Franklin, Int. J. Mass Spectrom. Ion Phys. 20, 19 (1976).10.1016/0020-7381(76)80029-0Suche in Google Scholar
[64] C. De Vreugd, R. W. Wijnaendts van Resandt, J. Los, and B. Smith, Chem. Phys. 42, 305 (1979).10.1016/0301-0104(79)80078-6Suche in Google Scholar
[65] J. D. Watts and R. J. Bartlett, J. Chem. Phys. 101, 409 (1994).10.1063/1.468149Suche in Google Scholar
[66] D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, Phys. Rev. A. 47, 4042 (1993).10.1103/PhysRevA.47.4042Suche in Google Scholar
[67] J. M. Dyke, C. Kirby, A. Morris, B. W. J. Gravenor, R. Klein et al., Chem. Phys. 88, 289 (1984).10.1016/0301-0104(84)85286-6Suche in Google Scholar
[68] D. L. Hildenbrand, J. Chem. Phys. 66, 3526 (1977).10.1063/1.434439Suche in Google Scholar
[69] C. J. Reid, J. A. Ballantine, S. R. Andrews, and F. M. Harris, Chem. Phys. 190, 113 (1995).10.1016/0301-0104(94)00335-8Suche in Google Scholar
[70] G. Herzberg and J. W. C. Johns, Ap. J. 158, 399 (1969).10.1086/150202Suche in Google Scholar
[71] P. Erman, A. Karawajczyk, E. Rachlew-Kallne, C. Stromholm, J. Larsson, et al., Chem. Phys. Lett. 215, 173 (1993).10.1016/0009-2614(93)89283-NSuche in Google Scholar
[72] G. Reiser, W. Habenicht, K. Muller-Dethlefs, and E. W. Schlag, Chem. Phys. Lett. 152, 119 (1988).10.1016/0009-2614(88)87340-8Suche in Google Scholar
[73] R. T. Wiedmann, R. G. Tonkyn, M. G. White, K. Wang, and V. McKoy, J. Chem. Phys. 97, 768 (1992).10.1063/1.463179Suche in Google Scholar
[74] K. Norwood and C. Y. Ng, Chem. Phys. Lett. 156, 145 (1989).10.1016/S0009-2614(89)87110-6Suche in Google Scholar
[75] J. B. Milan, W. J. Buma, and C. A. DeLange, J. Chem. Phys. 104, 521 (1996).10.1063/1.470848Suche in Google Scholar
[76] R. G. Tonkyn, J. W. Winniczek, and M. G. White, Chem. Phys. Lett. 164, 137 (1989).10.1016/0009-2614(89)85005-5Suche in Google Scholar
[77] J. Berkowitz, J. P. Greene, H. Cho, and B. Ruscic, J. Chem. Phys. 86, 1235 (1987).10.1063/1.452213Suche in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zna-2017-0176).
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0
Artikel in diesem Heft
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0