First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure
Abstract
We presented a detailed first-principal calculation to study the structural, elastic, dynamical, and thermal properties of a new synthetic ternary zinc nitride semiconductors CaZn2N2 using the generalised gradient approximation (GGA) method. The obtained lattice parameters of CaZn2N2 at 0 K and 0 GPa are in good agreement with the experimental data and other theoretical findings. The pressure dependences of the elastic constants Cij together with other derived mechanical properties of CaZn2N2 compound have also been systematically investigated. The results reveal that CaZn2N2 is mechanically stable up to 20 GPa. The calculated the phonon curves and phonon density of states under different pressures indicate that the CaZn2N2 compound maintains its dynamical stability up to 20 GPa. An analysis in terms of the irreducible representations of group theory obtained the optical vibration modes of this system, and we obtained the frequencies of the optical vibrational modes at Г points together with the atoms that contributed to these vibrations of CaZn2N2. Meanwhile, the pressure dependencies of the frequencies Raman-active and IR-active modes at 0–20 GPa have been studied. The quasi-harmonic approximation (QHA) was applied to calculate the thermal properties of CaZn2N2 as functions of pressures and temperatures such as the heat capacity, thermal expansions, the entropy, and Grüneisen parameter γ.
Acknowledgements
The authors would like to thank the supports by the NSAF (Grant Nos. U1430117, U1230201). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University. Some calculations are performed on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.
References
[1] S. J. Pearton, C. R. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics, Springer, New York 2006.10.1007/1-84628-359-0Suche in Google Scholar
[2] Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato, Y. Muraba, S. Limura, H. Hiramatsu, I. Tanaka, H. Hosono, and F. Oba, Nat. Commun. 7, 11962 (2016).10.1038/ncomms11962Suche in Google Scholar
[3] L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N. A. Spaldin, and H. A. Atwater, Adv. Mater. 25, 2562 (2013).10.1002/adma.201204718Suche in Google Scholar
[4] T. Endo, Y. Sato, H. Takizawa, and M. Shimada, J. Mater. Sci. Lett. 11, 424 (1992).10.1007/BF00728730Suche in Google Scholar
[5] H. Yamane and F. J. DiSalvo, J. Solid State Chem. 119, 5375 (1995).Suche in Google Scholar
[6] A. Zakutayev, A. J. Allen, X. W. Zhang, J. Vidal, Z. M. Cui, S. Lany, M. H. Yang, F. J. DiSalvo, and D. S. Ginley, Chem. Mater. 26, 4970 (2014).10.1021/cm5018135Suche in Google Scholar
[7] V. Schultz-Coulon and W. Schnick, Z. Naturforsch. 50b, 619 (1995).10.1515/znb-1995-0425Suche in Google Scholar
[8] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).10.1103/PhysRevB.47.558Suche in Google Scholar
[9] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).10.1103/PhysRevB.49.14251Suche in Google Scholar
[10] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).10.1016/0927-0256(96)00008-0Suche in Google Scholar
[11] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169Suche in Google Scholar PubMed
[12] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).10.1103/PhysRevB.45.13244Suche in Google Scholar
[13] J. P. Perdew, J. A. Chevary, S. H. Vosko, A. K. Jackson, M. R. Pedersen, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).10.1103/PhysRevB.46.6671Suche in Google Scholar
[14] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).10.1103/PhysRevB.50.17953Suche in Google Scholar
[15] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Suche in Google Scholar
[16] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).10.1103/PhysRevB.55.10355Suche in Google Scholar
[17] A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).10.1103/PhysRevB.78.134106Suche in Google Scholar
[18] A. Otero-de-la-Roza, D. Abbasi-Perez, and V. Luanea, Comput. Phys. Commun. 182, 2232 (2011).10.1016/j.cpc.2011.05.009Suche in Google Scholar
[19] Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).10.1103/PhysRevB.65.104104Suche in Google Scholar
[20] J. G. Berryman, J. Mech. Phys. Solids 53, 2141 (2005).10.1016/j.jmps.2005.05.004Suche in Google Scholar
[21] R. Hill, Proc. Phys. Soc. A 65, 349 (1952).10.1088/0370-1298/65/5/307Suche in Google Scholar
[22] O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).10.1016/0022-3697(63)90067-2Suche in Google Scholar
[23] K. B. Panda and K. S. Ravi Chandran, Comp. Mater. Sci. 35, 134 (2006).10.1016/j.commatsci.2005.03.012Suche in Google Scholar
[24] G. V. Sin’ko and N. A. Smirnov, Phys. Rev. B 71, 214108 (2005).10.1103/PhysRevB.71.214108Suche in Google Scholar
[25] G. V. Sin’ko and N. A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002).10.1088/0953-8984/14/29/301Suche in Google Scholar
[26] K. Haddadi, A. Bouhemadou, and S. Bin-Omran, Comp. Mater. Sci. 53, 204 (2012).10.1016/j.commatsci.2011.08.009Suche in Google Scholar
[27] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).10.1107/S0021889811038970Suche in Google Scholar
[28] F. Birch, Phys. Rev. 71, 809 (1947).10.1103/PhysRev.71.809Suche in Google Scholar
[29] I. A. Hijazi and Y. H. Park, J. Mater. Sci. Technol. 25, 835 (2009).Suche in Google Scholar
[30] J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).10.1103/PhysRevLett.61.2879Suche in Google Scholar
[31] S. F. Pugh, Philos. Mag. 45, 833 (1954).Suche in Google Scholar
[32] F. Chu, Y. He, D. J. Thoma, and T. E. Mitchell, Scr. Metal. Mater. 33, 1295 (1995).10.1016/0956-716X(95)00357-2Suche in Google Scholar
[33] K. B. Panda and K. S. Ravi Chandran, Comp. Mater. Sci. 35, 134 (2006).10.1016/j.commatsci.2005.03.012Suche in Google Scholar
[34] E. Kroumova, M. I. Aroyo, J. M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, Phase Trans. 76, 155 (2003).10.1080/0141159031000076110Suche in Google Scholar
[35] M. A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).10.1016/j.comphy.2003.12.001Suche in Google Scholar
[36] L.Y. Lu, Y. Cheng, X. R. Chen, and J. Zhu, Phys. B 370, 236 (2005).10.1016/j.physb.2005.09.017Suche in Google Scholar
[37] X. F. Li, X. R. Chen, C. M. Meng, and G. F. Ji, Solid State Commun. 139, 197 (2006).10.1016/j.ssc.2006.06.013Suche in Google Scholar
[38] X. R. Chen, Z. Y. Zeng, Z. L. Liu, L. C. Cai, and F. Q. Jing, Phys. Rev. B 83, 132102 (2011).10.1103/PhysRevB.83.132102Suche in Google Scholar
[39] Y. Y. Qi, Y. Cheng, M. Liu, X. R. Chen, and L. C. Cai, Phys. B 423, 13 (2013).10.1016/j.physb.2013.05.033Suche in Google Scholar
[40] T. Zhang, Y. Cheng, Z. L. Lv, G. F. Ji, and M. Gong, Int. J. Mod. Phys. B 8, 1450026 (2014).10.1142/S021797921450026XSuche in Google Scholar
[41] P. Debye, Ann. Phys. 344, 789 (1912).10.1002/andp.19123441404Suche in Google Scholar
[42] A. Einstein, Ann. Phys. 328, 197 (1907).10.1002/andp.19073280613Suche in Google Scholar
[43] V. P. Vassilieva, W. Gongb, A. F. Taldrikc, and S. A. Kulinich, J. Alloy. Comp. 552, 248 (2013).10.1016/j.jallcom.2012.10.075Suche in Google Scholar
[44] A.T. Petit and P. L. Dulong, Ann. Chim. Phys. 10, 395 (1819).Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- First Principle DFT Study of Electric Field Effects on the Characteristics of Bilayer Graphene
- Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
- Molecular Interactions in Particular Van der Waals Nanoclusters
- Neimark-Sacker Bifurcation and Chaotic Behaviour of a Modified Host–Parasitoid Model
- First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure
- Quantum-Phase-Field Concept of Matter: Emergent Gravity in the Dynamic Universe
- Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
- Electronic Polarisability of NaNO2–NaNO3 and NaOH–NaNO3 Ionic Melts and Effective Ionic Radius of OH-
- Upon Generating Discrete Expanding Integrable Models of the Toda Lattice Systems and Infinite Conservation Laws
- Preparation, Structural, Optical, Electrical, and Magnetic Characterisation of Orthorhombic GdCr0.3Mn0.7O3 Multiferroic Nanoparticles
Artikel in diesem Heft
- Frontmatter
- First Principle DFT Study of Electric Field Effects on the Characteristics of Bilayer Graphene
- Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
- Molecular Interactions in Particular Van der Waals Nanoclusters
- Neimark-Sacker Bifurcation and Chaotic Behaviour of a Modified Host–Parasitoid Model
- First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure
- Quantum-Phase-Field Concept of Matter: Emergent Gravity in the Dynamic Universe
- Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
- Electronic Polarisability of NaNO2–NaNO3 and NaOH–NaNO3 Ionic Melts and Effective Ionic Radius of OH-
- Upon Generating Discrete Expanding Integrable Models of the Toda Lattice Systems and Infinite Conservation Laws
- Preparation, Structural, Optical, Electrical, and Magnetic Characterisation of Orthorhombic GdCr0.3Mn0.7O3 Multiferroic Nanoparticles