Home Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
Article
Licensed
Unlicensed Requires Authentication

Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions

  • Lili Feng , Fajun Yu EMAIL logo and Li Li
Published/Copyright: December 21, 2016

Abstract

Starting from a 3×3 spectral problem, a Darboux transformation (DT) method for coupled Schrödinger (CNLS) equation is constructed, which is more complex than 2×2 spectral problems. A scheme of soliton solutions of an integrable CNLS system is realised by using DT. Then, we obtain the breather solutions for the integrable CNLS system. The method is also appropriate for more non-linear soliton equations in physics and mathematics.

Acknowledgments

This work was supported by the Natural Science Foundation of Liaoning Province, China (grant no. 201602678).

References

[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, New York 1991.10.1017/CBO9780511623998Search in Google Scholar

[2] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, et al., Nat. Phys. 6, 790 (2010).10.1038/nphys1740Search in Google Scholar

[3] M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, et al. Phys. Rev. Lett. 107, 253901 (2011).10.1103/PhysRevLett.107.253901Search in Google Scholar PubMed

[4] G. P. Agrawal, Applications of Nonlinear Fiber, Academic, San Diego 2001.Search in Google Scholar

[5] S. K. Adhikari, Phys. Rev. A. 63, 043611 (2001).10.1103/PhysRevA.63.043611Search in Google Scholar

[6] A. Uthayakumar, Y. G. Han, and S. B. Lee, Chaos Solitons Fract. 29, 916 (2006).10.1016/j.chaos.2005.08.055Search in Google Scholar

[7] A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Clarendon, Oxford 1995.10.1093/oso/9780198565079.001.0001Search in Google Scholar

[8] G. J. Roskes, Stud. Appl. Math. 55, 231 (1976).10.1002/sapm1976553231Search in Google Scholar

[9] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).10.1103/RevModPhys.71.463Search in Google Scholar

[10] D. S. Wang, D. J. Zhang, and J. K. Yang, J. Math. Phys. 51, 023510 (2010).10.1063/1.3290736Search in Google Scholar

[11] N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, Chapman and Hall, London 1997.Search in Google Scholar

[12] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York 2003.10.1016/B978-012410590-4/50012-7Search in Google Scholar

[13] M. P. Barnett, J. F. Capitani, J. Von Zur Gathen, and J. Gerhard, Int. J. Quantum Chem. 100, 80 (2004).10.1002/qua.20097Search in Google Scholar

[14] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin 1991.10.1007/978-3-662-00922-2Search in Google Scholar

[15] M. Wadati, J. Phys. Soc. Jpn. 38, 673 (1975).10.1143/JPSJ.38.673Search in Google Scholar

[16] Y. T. Gao and B. Tian, Phys. Lett. A. 361, 523 (2007).10.1016/j.physleta.2006.11.019Search in Google Scholar

[17] J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983).10.1063/1.525721Search in Google Scholar

[18] R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ. Press, Cambridge 2004.10.1017/CBO9780511543043Search in Google Scholar

[19] P. Deift and E. Trubowitz, Comm. Pure Appl. Math. 32, 121 (1979).10.1002/cpa.3160320202Search in Google Scholar

[20] C. H. Gu, H. S. Hu, and Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry, Springer, Berlin 2006.Search in Google Scholar

[21] C. L. Terng and K. Uhlenbeck, Comm. Pure Appl. Math. 53, 1 (2000).10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-USearch in Google Scholar

[22] S. P. Novikov, S. V. Manakov, V. E. Zakharov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method, Springer, Berlin 1984.Search in Google Scholar

[23] C. H. Gu, H. S. Hu, and Z. X. Zhou, Darboux Transform in Soliton Theory and Its Geometric Applications. Shanghai Scientific Technical Publishers, Shanghai 1999.Search in Google Scholar

[24] H. Y. Ding, X. X. Xu, and X. D. Zhao, Chin. Phys. 13, 125 (2004).10.1088/1009-1963/13/2/001Search in Google Scholar

[25] Y. T. Wu and X. G. Geng, J. Phys. A Math. Gen. 31, L677 (1998).10.1088/0305-4470/31/38/004Search in Google Scholar

[26] X. X. Xu, H. X. Yang, and Y. P. Sun, Mod. Phys. Lett. B. 20, 641 (2006).10.1142/S0217984906011025Search in Google Scholar

[27] X. X. Xu, Commun. Nonlinear. Sci. 23, 192 (2015).10.1016/j.cnsns.2014.11.002Search in Google Scholar

[28] L. Wang, J. H. Zhang, C. Liu, M. Li, and F. H. Qi, Phys. Rev. E. 93, 062217 (2016).10.1103/PhysRevE.93.062217Search in Google Scholar PubMed

[29] L. Wang, J. H. Zhang, Z. Q. Wang, C. Liu, M. Li, et al., Phys. Rev. E. 93, 012214 (2016).10.1103/PhysRevE.93.012214Search in Google Scholar PubMed

[30] L. Wang, Y. J. Zhu, F. H. Qi, M. Li, and R. Guo, Chaos 25, 063111 (2015).10.1063/1.4922025Search in Google Scholar PubMed

[31] L. Wang, X. Li, F. H. Qi, and L. L. Zhang, Ann. Phys. 359, 97 (2015).10.1016/j.aop.2015.04.025Search in Google Scholar

[32] F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, Phys. Rev. Lett. 109, 044102 (2012).10.1103/PhysRevLett.109.044102Search in Google Scholar PubMed

[33] B. L. Guo and L. M. Ling, Chin. Phys. Lett. 28, 110202 (2011).10.1088/0256-307X/28/11/110202Search in Google Scholar

[34] S. V. Manakov. Sov. Phys. JETP 38, 248 (1974).Search in Google Scholar

[35] P. K. A. Wai, C. R. Menyuk, and H. H. Chen, Opt. Lett. 16, 1231 (1991).10.1364/OL.16.001231Search in Google Scholar

Received: 2016-9-6
Accepted: 2016-11-10
Published Online: 2016-12-21
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0342/html
Scroll to top button