Home Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
Article
Licensed
Unlicensed Requires Authentication

Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators

  • M.M. Fatih Karahan EMAIL logo and Mehmet Pakdemirli
Published/Copyright: December 23, 2016

Abstract

Strongly nonlinear cubic-quintic Duffing oscillatoris considered. Approximate solutions are derived using the multiple scales Lindstedt Poincare method (MSLP), a relatively new method developed for strongly nonlinear oscillators. The free undamped oscillator is considered first. Approximate analytical solutions of the MSLP are contrasted with the classical multiple scales (MS) method and numerical simulations. It is found that contrary to the classical MS method, the MSLP can provide acceptable solutions for the case of strong nonlinearities. Next, the forced and damped case is treated. Frequency response curves of both the MS and MSLP methods are obtained and contrasted with the numerical solutions. The MSLP method and numerical simulations are in good agreement while there are discrepancies between the MS and numerical solutions.

References

[1] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley and Sons, New York 1979.Search in Google Scholar

[2] A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley and Sons, New York 1981.Search in Google Scholar

[3] A. Aziz and T. Y. Na, Perturbation Methods in Heat Transfer, Hemisphere Publishing Corporation, Washington 1984.Search in Google Scholar

[4] E. J. Hinch, Perturbation Methods, Cambridge University Press, New York 1991.10.1017/CBO9781139172189Search in Google Scholar

[5] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York 1981.10.1007/978-1-4757-4213-8Search in Google Scholar

[6] H. Hu, J. Sound Vib. 269, 409 (2004).10.1016/S0022-460X(03)00318-3Search in Google Scholar

[7] H. Hu and Z. G. Xiong, J. Sound Vib. 278, 437 (2004).10.1016/j.jsv.2003.12.007Search in Google Scholar

[8] M. Pakdemirli, M. M. F. Karahan, and H. Boyacı, Math. Comput. Appl. 14, 31 (2009).10.3390/mca14010031Search in Google Scholar

[9] M. Pakdemirli and M. M. F. Karahan, Methods Appl. Sci. 33, 704 (2010).10.1002/mma.1187Search in Google Scholar

[10] M. Pakdemirli, M. M. F. Karahan and H. Boyacı, Math. Comput. Appl. 16, 879 (2011).10.3390/mca16040879Search in Google Scholar

[11] M. Pakdemirli, Z. Naturforsch. 70, 829 (2015).10.1515/zna-2015-0312Search in Google Scholar

[12] M. Pakdemirli and G. Sari, Math. Comput. Appl. 20, 137 (2015).10.19029/mca-2015-012Search in Google Scholar

[13] M. Pakdemirli and G. Sari, Comm. Num. Anal. 2015, 82 (2015).10.5899/2015/cna-00230Search in Google Scholar

[14] S. K. Lai, C. W. Lim, B. S. Wu, C. Wang, Q. C. Zeng, et al., Appl. Math. Model. 33, 852 (2009).10.1016/j.apm.2007.12.012Search in Google Scholar

[15] B. S. Wu, W. P. Sun, and C. W. Lim, Int. J. Nonlinear Mech. 41, 766 (2006).10.1016/j.ijnonlinmec.2006.01.006Search in Google Scholar

[16] D. D. Ganji, M. Gorji, S. Soleimani, and M. Esmaeilpour, J. Zhejiang Univ. Sci. A. 10, 1263 (2009).10.1631/jzus.A0820651Search in Google Scholar

[17] S. Durmaz and M. O. Kaya, J. Appl. Math. 2012, 518684 (2012).10.1155/2012/518684Search in Google Scholar

[18] A. Beléndez, M. L. Alvarez, J. Francés, S. Bleda, T. Beléndez, et al., J. Appl. Math. 2012, 286290 (2012).10.1155/2012/286290Search in Google Scholar

[19] A. Elías-Zúñiga, Appl. Math. Model. 37, 2574 (2013).10.1016/j.apm.2012.04.005Search in Google Scholar

[20] A. Beléndez, T. Beléndez, F. J. Martínez, C. Pascual, M. L. Alvarez, et al., Nonlinear Dyn. 86, 1687 (2016).10.1007/s11071-016-2986-8Search in Google Scholar

[21] A. Elías-Zúñiga, Appl. Math. Comput. 246, 474 (2014).10.1016/j.amc.2014.07.110Search in Google Scholar

[22] M. Kumar and M. Parul, Int. J. Model. Simul. Sci. Comput. 3, 1250014 (2012).10.1142/S1793962312500146Search in Google Scholar

[23] M. Pakdemirli, J. Sound Vib. 262, 989 (2003).10.1016/S0022-460X(02)01429-3Search in Google Scholar

[24] A. H. Nayfeh, Nonlinear Dyn. 40, 61 (2005).10.1007/s11071-005-3937-ySearch in Google Scholar

Received: 2016-7-19
Accepted: 2016-10-23
Published Online: 2016-12-23
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0263/html
Scroll to top button